-
多环芳烃(PAHs)是一种难降解性有机污染物,其环境归趋受到人们的广泛重视与关注[1-2]. 其中,苯并[a]芘(BaP)是环境中主要的PAHs种类,我国每年约有470—900 t的BaP排放到环境中. BaP作为强致癌类物质的代表,是我国环境监测的常规项目[3]. 人工湿地(CWs)可以利用基质吸附、植物吸收、微生物降解等物理、化学、生物协同作用有效降低BaP浓度. 研究表明,CWs对BaP的去除率约为78%—92%,是环境中BaP一个重要的汇[4]. 与基质吸附相比,植物生物修复可以将汇入CWs中的BaP进行捕获、吸附或吸收,这一去除过程更为彻底,体现了CWs的“绿色”特征[5].
植物对环境中BaP的吸收是一个复杂而系统的过程,涉及不同的生物和化学等过程[6]. 研究表明,植物具有高比表面积和脂肪含量的侧根可有效吸附BaP[7],根系吸附的BaP不能被植物完全吸收,BaP只有在穿过质膜进入细胞质通道时才能被根吸收[8]. 植物通过释放根系分泌物造成基质上有机质分解速率改变的现象被称为植物激发效应[9],其对于地下环境有机质周转以及全球碳循环的影响至关重要[10],但当前尚缺乏CWs中根系分泌物激发效应的系统研究.
本研究以BaP为研究对象,系统分析典型湿地水生植物菖蒲中BaP的去除、吸收和归趋规律及其对CWs去除BaP的影响,并通过根箱试验,深入探究根系分泌物存在情况下湿地基质-水界面BaP的组分转化,明确根系分泌物对BaP赋存状态与环境归趋的影响机制.
典型人工湿地系统中植物对苯并[a]芘的去除作用及机制
Removal of benzo[a]pyrene by plants in typical constructed wetland system and its mechanism
-
摘要: 人工湿地(CWs)可有效去除环境中的苯并[a]芘(BaP),湿地植物对BaP的吸收是受生物、化学等因素影响的复杂过程,其对CWs中BaP环境归趋的影响机制还不明确. 本文系统分析了典型湿地植物菖蒲中BaP的去除、吸收和归趋规律. 结果表明,菖蒲可累积大量的BaP,含量达到(2.13±0.05)μg·g−1;根部组织中观察到较高浓度的BaP,BaP可以更容易地从菖蒲的根部到地上部组织进行迁移. 菖蒲大幅提升了CWs对BaP的去除效果,菖蒲CWs的BaP去除率较对照系统提升79.47%. 菖蒲的根系分泌物可以提高BaP的生物可利用性,加速BaP的组分净化和转化.Abstract: Constructed wetlands (CWs) can effectively remove benzo[a]pyrene (BaP) from the environment. The absorption of BaP by wetland plants is a complex process affected by biological, chemical and other factors, and its impact mechanism on the environmental fate of BaP in CWs is still unclear. In this paper, the removal, absorption and fate of BaP in typical wetland plant Acorus calamus were systematically analyzed. The results showed that Acorus calamus could accumulate a large amount of BaP. The content of BaP in Acorus calamus could reach (2.13±0.05) μg·g−1. Higher concentrations of BaP were observed in the root tissues, and BaP could migrate more easily from the root to the shoot tissues. The BaP removal rate of CWs with Acorus calamus was 79.47% higher than that of the control CWs, indicating the presence of Acorus calamus can greatly improve the removal effeciency of CWs on BaP. The root exudates of Acorus calamus can enhance the bioavailability of BaP and subsequently accelerate the purification and transformation of BaP components.
-
Key words:
- BaP /
- environmental fate /
- constructed wetlands /
- plant /
- rhizosphere
-
表 1 菖蒲组织中BaP分配规律(*P≤0.05;**P≤0.01)
Table 1. Distribution of BaP in various tissues of Acorus calamus (*P≤0.05; **P≤0.01)
指标
Index菖蒲
Acorus calamus根系富集因子RCF 13.00** 茎叶富集因子SCF 3.30 迁移因子TF 3.60 RCF SCF$ \times $ 6.20** RCF TF$ \times $ 14.60** SCF TF$ \times $ 2.40 -
[1] 亓昕, 代嫣然, 王飞华, 等. 人工湿地去除特殊污染物的研究进展[J]. 环境科学与技术, 2017, 40(S1): 119-124. QI X, DAI Y R, WANG F H, et al. Research progress of constructed wetlands for treatment of particular pollutants[J]. Environmental Science & Technology, 2017, 40(Sup 1): 119-124 (in Chinese).
[2] 陈婧, 栾天罡, 罗丽娟. 烷基化多环芳烃的细菌降解研究进展 [J]. 环境化学, 2022, 9: 31-45. doi: 10.7524/j.issn.0254-6108.2020090801 CHEN J, LUAN T, LUO L. Research progress in bacterial degradation of alkylated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2022, 9: 31-45(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090801
[3] MENG Y, LIU X H, LU S Y, et al. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China [J]. Science of the Total Environment, 2019, 651: 2497-2506. doi: 10.1016/j.scitotenv.2018.10.162 [4] SU X, YUAN J, LU Z J, et al. An enlarging ecological risk: Review on co-occurrence and migration of microplastics and microplastic-carrying organic pollutants in natural and constructed wetlands [J]. Science of the Total Environment, 2022, 837: 155772. doi: 10.1016/j.scitotenv.2022.155772 [5] FOUNTOULAKIS M S, TERZAKIS S, KALOGERAKIS N, et al. Removal of polycyclic aromatic hydrocarbons and linear alkylbenzene sulfonates from domestic wastewater in pilot constructed wetlands and a gravel filter [J]. Ecological Engineering, 2009, 35(12): 1702-1709. doi: 10.1016/j.ecoleng.2009.06.011 [6] ZHAO C C, XU J T, SHANG D W, et al. Application of constructed wetlands in the PAH remediation of surface water: A review [J]. The Science of the Total Environment, 2021, 780: 146605. doi: 10.1016/j.scitotenv.2021.146605 [7] JIAO X C, XU F L, DAWSON R, et al. Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots [J]. Environmental Pollution, 2007, 148(1): 230-235. doi: 10.1016/j.envpol.2006.10.025 [8] ROPER J C, SARKAR J M, DEC J, et al. Enhanced enzymatic removal of chlorophenols in the presence of co-substrates [J]. Water Research, 1995, 29(12): 2720-2724. doi: 10.1016/0043-1354(95)00101-P [9] CHEN X H, HU Z, XIE H J, et al. Priming effects of root exudates on the source-sink stability of benzo[a]pyrene in wetlands: A microcosm experiment [J]. Journal of Hazardous Materials, 2022, 429: 128364. doi: 10.1016/j.jhazmat.2022.128364 [10] WANG Y D, OUYANG W, LIN C Y, et al. Higher fine particle fraction in sediment increased phosphorus flux to estuary in restored Yellow River Basin [J]. Environmental Science & Technology, 2021, 55(10): 6783-6790. [11] HAN) WENG Z, van ZWIETEN L, SINGH B P, et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits [J]. Nature Climate Change, 2017, 7(5): 371-376. doi: 10.1038/nclimate3276 [12] GAO Y, WU S C, YU X Z, et al. Dissipation gradients of phenanthrene and pyrene in the rice rhizosphere [J]. Environmental Pollution, 2010, 158(8): 2596-2603. doi: 10.1016/j.envpol.2010.05.012 [13] CHENG Y, DING J, LIANG X Y, et al. Fractions transformation and dissipation mechanism of dechlorane plus in the rhizosphere of the soil-plant system [J]. Environmental Science & Technology, 2020, 54(11): 6610-6620. [14] KANG F X, CHEN D S, GAO Y Z, et al. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam. ) [J]. BMC Plant Biology, 2010, 10: 210. doi: 10.1186/1471-2229-10-210 [15] SIVARAM A K, LOGESHWARAN P, SUBASHCHANDRABOSE S R, et al. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils [J]. Scientific Reports, 2018, 8: 2100. doi: 10.1038/s41598-018-20317-0 [16] SOLÍS-DOMINGUEZ F A, WHITE S A, HUTTER T B, et al. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: Effect of plant species [J]. Environmental Science & Technology, 2012, 46(2): 1019-1027. [17] TORN M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover [J]. Nature, 1997, 389(6647): 170-173. doi: 10.1038/38260 [18] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588-595. doi: 10.1038/nclimate2580 [19] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470-480. doi: 10.1038/s41564-018-0129-3