-
四环素类抗生素(tetracyclines,TCs)具有治疗和预防动物疾病、促进动物生长、提高畜牧业生产力等作用[1],是我国畜禽养殖业中使用量最大的一类兽用抗生素,约占总使用量的37%[2 − 3]. 不同动物使用的抗生素类型和剂量不同. 猪和鸡的高养殖密度和较短的繁殖期,抗生素使用频繁;通常牛的养殖密度较低,抗生素相对使用率低[4]. 四环素类抗生素不能被动物机体完全吸收,以母体或代谢物的形式随畜禽粪便排出[5]. 畜禽粪便通过集中处理和种养结合等模式生产有机肥[6]的肥料化利用是其处理和资源化利用的主要方式[7]. 有机肥中仍存在较高浓度的土霉素、四环素和金霉素等TCs残留[8],施用有机肥的农田土壤中TCs母体的残留水平也可高达mg·kg−1水平[9]. 残留的抗生素可能会对土壤微生物施加选择压力,导致细菌耐药性增加[10];同时土壤中的抗生素也可被动、植物吸收,并可能通过食物链进入到人体,对健康构成潜在危害[11 − 12].
TCs容易发生水解或光解,可通过差向异构化,脱水和质子转移途径形成差向异构体、脱水产物、差向脱水产物等转化产物[13 − 14]. 一些四环素类转化产物不仅毒性更大,而且在环境中更稳定[12]. 有研究发现污泥中的TCs母体及转化产物可能会对水生生物造成明显的水生毒性风险[15]. 一些转化产物如脱水四环素对敏感和耐药的土壤细菌具有较大的毒性[13]. 为全面评估抗生素的环境影响,欧盟委员会“REACH”法规建议应同时考虑抗生素母体及转化产物的残留和风险[16]. 四环素类转化产物在畜禽粪便[17]和施肥土壤[18]中也有较高水平的检出. 猪粪源有机肥及其施肥土壤四环素类抗生素和转化产物的总浓度分别为851 μg·kg−1和776 μg·kg−1[19]. 然而,目前关于不同动物类型和资源化处理模式的有机肥及施肥土壤中四环素类抗生素的分布特征并不清楚,特别是针对四环素类抗生素转化产物的研究仍非常有限.
本研究以4种兽用TCs(四环素、土霉素、金霉素及强力霉素)及10种转化产物为研究对象,对全国8个省(市)不同类型畜禽粪便源(猪粪、鸡粪、牛粪及羊粪)有机肥样品进行采样调查,主要研究了1)有机肥中4种四环素类抗生素及10种转化产物的分布特征;2)不同动物类型和畜禽粪便处理模式对有机肥中四环素类抗生素及转化产物的影响;3)典型地区有机肥和施肥土壤中的四环素类抗生素及转化产物的残留情况. 本研究有助于了解畜禽粪便处理和利用过程中的四环素类转化产物的分布特征和归趋行为,为畜禽粪便的资源化利用和土壤安全施用提供数据基础.
畜禽粪便源有机肥中四环素类抗生素及转化产物的分布特征
Occurrence of tetracyclines and their transformation products in manure-based organic fertilizers
-
摘要: 畜禽粪便源有机肥是农田土壤中抗生素母体及转化产物污染的重要来源之一. 为研究畜禽粪便源有机肥中四环素类抗生素及转化产物的残留情况,在全国8个省(市)采集55 个有机肥样品,采用超高效液相色谱-串联质谱法(UPLC-MS/MS),分析畜禽粪便源有机肥中四环素、强力霉素、金霉素和土霉素4 种四环素类抗生素及10种转化产物的分布特征. 结果表明,四环素、强力霉素、金霉素和土霉素在55个有机肥样品中均有检出,浓度分别为1.63—4348 μg·kg−1、ND—11451 μg·kg−1、ND—30300 μg·kg−1、7.11—55008 μg·kg−1. 10种转化产物中,差向异构体是主要的转化产物. 不同畜禽粪便来源的有机肥中四环素类抗生素及转化产物的浓度存在显著差异,猪粪肥样品中四环素类抗生素及转化产物的浓度高于鸡粪肥、牛粪肥和羊粪肥. 畜禽粪便资源化利用模式可能也会影响有机肥中四环素类抗生素的浓度. 种养结合模式生产的有机肥中四环素类抗生素及转化产物的浓度显著高于集中处理模式生产的有机肥. 进一步研究了典型地区畜禽粪便源有机肥和施肥土壤中的四环素类抗生素及转化产物残留的污染特征,发现四环素类抗生素及转化产物通过施用有机肥进入土壤环境中,差向异构体在施肥土壤中仍是主要的转化产物. 畜禽粪便源有机肥和施肥土壤中四环素类抗生素及转化产物的残留不容忽视.Abstract: Manure-based organic fertilizers are important sources of pollution of antibiotic and transformation products in farmland soil. To study the residues of tetracyclines and transformation products in manure-based organic fertilizers, 55 organic fertilizer samples were collected from eight provinces in China. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the distribution characteristics of tetracycline, doxycycline, chlortetracycline, oxytetracycline and their transformation products in organic fertilizers. The results showed that tetracycline, doxycycline, chlortetracycline and oxytetracycline were detected in 55 organic fertilizer samples, and the concentrations were 1.63—4348 μg·kg−1, ND—11451 μg·kg−1, ND—30300 μg·kg−1, 7.11—55008 μg·kg−1, respectively. Among the 10 transformation products, the 4-epimers were the main transformation products. There were significant differences in the contents of tetracyclines and their transformation products in organic fertilizers produced from manure of different animal species. The concentrations and detection rates of tetracyclines and their transformation products in swine manure fertilizers were higher than those in chicken manure fertilizers, cattle manure fertilizers and sheep manure fertilizers. The treatment model of resource utilization of livestock manure might also affect the contents of tetracyclines in organic fertilizers. The concentrations of tetracyclines and their transformation products in organic fertilizers produced by the model of combination of farming and animal husbandry were significantly higher than those produced by the mode of centralized treatment. The pollution characteristics of tetracyclines and their transformation products in manure-based organic fertilizers and fertilized soil in typical areas were further studied. The results showed that the 4-epimers were still the main transformation products in the fertilized soil. Therefore, the residues of tetracyclines and their transformation products in manure-based organic fertilizers and fertilized soil cannot be ignored.
-
表 1 畜禽粪便源有机肥和土壤样品中四环素类及转化产物的加标回收率
Table 1. The recoveries of tetracyclines and their transformation products in manure-based organic fertilizer and soil samples
目标分析物
Compounds畜禽粪便源有机肥
Manure-based organic fertilizer土壤
Soil20 μg·L−1 100 μg·L−1 20 μg·L−1 100 μg·L−1 四环素(TC) 133% (2.1%) 127% (1.9%) 135% (3.1%) 119% (0.8%) 差向四环素(ETC) 113% (3.1%) 101% (2.3%) 103% (1.2%) 96% (1.2%) 脱水四环素(ATC) 88% (13%) 71% (3.4%) — — 差向脱水四环素(EATC) 64% (3.3%) 46% (8.5%) — — 强力霉素(DC) 124% (3.0%) 123% (0.4%) 85% (1.6%) 83% (1.7%) 金霉素(CTC) 136% (2.5%) 123% (1.8%) 118% (1.3%) 103% (0.7%) 差向金霉素(ECTC) 130% (5.2%) 113% (3.5%) 114% (2.0%) 107% (0.8%) 异金霉素(ICTC) 113% (0.7%) 116% (2.7%) 90% (1.7%) 83% (1.5%) 脱水金霉素(ACTC) 43% (11.0%) 38% (1.5%) — — 差向脱水金霉素(EACTC) 16% (10.8%) 12% (11.0%) — — 土霉素(OTC) 122% (1.3%) 129% (0.6%) 109% (2.3%) 88% (1.0%) 差向土霉素(EOTC) 129% (1.8%) 122% (4.0%) 113% (4.2%) 86% (7.2%) α-apo-土霉素(α-apo-OTC) 96% (3.5%) 83% (4.4%) — — β-apo-土霉素(β-apo-OTC) 54% (8.6%) 49% (1.6%) — — 注:测定了20、100 μg·L−1 两个加标浓度下四环素类抗生素及转化产物的回收率. 表中数据表示回收率(RSD). “—”表示未分析.
Note: The recoveries of tetracyclines and transformation products at two spiked concentrations of 20 and 100 μg·L−1 were determined. The values in the table represent recovery (RSD); “—” indicates that the data is not analyzed.表 2 畜禽粪便源有机肥样品中四环素类抗生素及转化产物的浓度
Table 2. The concentrations of tetracyclines and their transformation products in manure-based organic fertilizer samples
目标物
Compounds检出率
Frequency平均浓度/(μg·kg−1)
Mean最小值 /(μg·kg−1)
Minimum中位值/(μg·kg−1)
Median最大值/(μg·kg−1)
MaximumTC 100% 267 1.63 27.8 4348 ETC 93% 129 ND 13.6 2270 ATC 49% 59.9 ND 12.6 543 EATC 49% 47.5 ND ND 644 DC 76% 903 ND 70.7 11450 CTC 76% 1314 ND 27.7 30300 ECTC 87% 1277 ND 19.5 31310 ICTC 46% 302 ND 6.99 8205 ACTC 9% 16.8 ND ND 189 EACTC 42% 5.78 ND ND 85.0 OTC 100% 2265 7.11 53.5 55008 EOTC 95% 518 ND 64.6 12772 α-apo-OTC 27% 33.6 ND ND 672 β-apo-OTC 22% 4.63 ND ND 70.0 四环素类抗生素总和 100% 7143 54.6 584 104905 注:检出率=检出四环素类抗生素的样品数/采样数;四环素类抗生素总和为4种四环素类抗生素及10种转化产物浓度之和;ND., 未检出,低于各自的方法检出限.
Note: Detection rate=Number of samples with tetracyclines /Sample numbers; Sum of tetracyclines represent the total concentrations of 4 tetracyclines and 10 transformation products; ND., Not detected, less than the respective method detection limits. -
[1] GABALLAH M S, GUO J B, SUN H, et al. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook[J]. Bioresource Technology, 2021, 333: 125069. doi: 10.1016/j.biortech.2021.125069 [2] KRISHNASAMY V, OTTE J, SILBERGELD E. Antimicrobial use in Chinese swine and broiler poultry production[J]. Antimicrobial Resistance and Infection Control, 2015, 4(1): 17. doi: 10.1186/s13756-015-0050-y [3] 赵琪, 李霆, 姜子楠, 等. 2019年我国兽用抗菌药物使用情况分析研究[J]. 中国兽药杂志, 2022, 56(1): 71-76. doi: 10.11751/ISSN.1002-1280.2022.01.10 ZHAO Q, LI T, JIANG Z N, et al. Investigation on antimicrobial consumption in animals in China in 2019[J]. Chinese Journal of Veterinary Drug, 2022, 56(1): 71-76 (in Chinese). doi: 10.11751/ISSN.1002-1280.2022.01.10
[4] LI C, LI Y, LI X Y, et al. Veterinary antibiotics and estrogen hormones in manures from concentrated animal feedlots and their potential ecological risks[J]. Environmental Research, 2021, 198: 110463. doi: 10.1016/j.envres.2020.110463 [5] SUKUL P, LAMSHÖFT M, KUSARI S, et al. Metabolism and excretion kinetics of 14C-labeled and non-labeled difloxacin in pigs after oral administration, and antimicrobial activity of manure containing difloxacin and its metabolites[J]. Environmental Research, 2009, 109(3): 225-231. doi: 10.1016/j.envres.2008.12.007 [6] 朱满兴, 杨军香. 畜禽粪便资源化利用技术-集中处理模式[M]. 北京: 中国农业科学技术出版社, 2016. ZHU M X, YANG J X. Resource utilization technology of livestock manure-centralized treatment mode[M]. Beijing: China Agricultural Science and Technology Press, 2016 (in Chinese).
[7] 宣梦, 许振成, 吴根义, 等. 我国规模化畜禽养殖粪污资源化利用分析[J]. 农业资源与环境学报, 2018, 35(2): 126-132. doi: 10.13254/j.jare.2017.0257 XUAN M, XU Z C, WU G Y, et al. Analysis of utilization of fecal resources in large-scale livestock and poultry breeding in China[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 126-132 (in Chinese). doi: 10.13254/j.jare.2017.0257
[8] 杨威, 狄彩霞, 李季, 等. 我国有机肥原料及商品有机肥中四环素类抗生素的检出率及含量[J]. 植物营养与肥料学报, 2021, 27(9): 1487-1495. doi: 10.11674/zwyf.2021061 YANG W, DI C X, LI J, et al. Detection rate and concentration of tetracycline antibiotics in organic fertilizers raw materials and commercial products in China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1487-1495 (in Chinese). doi: 10.11674/zwyf.2021061
[9] HOU J, WAN W N, MAO D Q, et al. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China[J]. Environmental Science and Pollution Research, 2015, 22(6): 4545-4554. doi: 10.1007/s11356-014-3632-y [10] ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440. [11] KUMAR M, JAISWAL S, SODHI K K, et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance[J]. Environment International, 2019, 124: 448-461. doi: 10.1016/j.envint.2018.12.065 [12] HU X G, ZHOU Q X, LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998. doi: 10.1016/j.envpol.2010.05.023 [13] HALLING-SØRENSEN B, SENGELØV G, TJØRNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271. doi: 10.1007/s00244-001-0017-2 [14] JIA A, XIAO Y, HU J Y, et al. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(22): 4655-4662. doi: 10.1016/j.chroma.2009.03.073 [15] ZHONG S F, YANG B, LEI H J, et al. Transformation products of tetracyclines in three typical municipal wastewater treatment plants[J]. Science of the Total Environment, 2022, 830: 154647. doi: 10.1016/j.scitotenv.2022.154647 [16] EVGENIDOU E N, KONSTANTINOU I K, LAMBROPOULOU D A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review[J]. Science of the Total Environment, 2015, 505: 905-926. doi: 10.1016/j.scitotenv.2014.10.021 [17] WU X F, WEI Y S, ZHENG J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10): 5924-5931. doi: 10.1016/j.biortech.2011.03.007 [18] SOLLIEC M, ROY-LACHAPELLE A, GASSER M O, et al. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment[J]. Science of the Total Environment, 2016, 543: 524-535. doi: 10.1016/j.scitotenv.2015.11.061 [19] QIAO M, CHEN W D, SU J Q, et al. Fate of tetracyclines in swine manure of three selected swine farms in China[J]. Journal of Environmental Sciences, 2012, 24(6): 1047-1052. doi: 10.1016/S1001-0742(11)60890-5 [20] ZHOU X, QIAO M, WANG F H, et al. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil[J]. Environmental Science and Pollution Research, 2017, 24(1): 701-710. doi: 10.1007/s11356-016-7854-z [21] WALLACE J S, AGA D S. Enhancing extraction and detection of veterinary antibiotics in solid and liquid fractions of manure[J]. Journal of Environmental Quality, 2016, 45(2): 471-479. doi: 10.2134/jeq2015.05.0246 [22] 朱峰, 吴晓松, 李放, 等. 超高效液相色谱-串联质谱法同时检测消毒产品中13种抗生素[J]. 卫生研究, 2021, 50(1): 121-128. doi: 10.19813/j.cnki.weishengyanjiu.2021.01.021 ZHU F, WU X S, LI F, et al. Simultaneous determination of 13 antibiotics in disinfection products by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of hygiene research, 2021, 50(1): 121-128 (in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2021.01.021
[23] ARIKAN O A, SIKORA L J, MULBRY W, et al. The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves[J]. Process Biochemistry, 2006, 41(7): 1637-1643. doi: 10.1016/j.procbio.2006.03.010 [24] QIAN M R, WU H Z, WANG J M, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016, 559: 174-181. doi: 10.1016/j.scitotenv.2016.03.123 [25] 赵文, 潘运舟, 兰天, 等. 海南商品有机肥中重金属和抗生素含量状况与分析[J]. 环境化学, 2017, 36(2): 408-419. doi: 10.7524/j.issn.0254-6108.2017.02.2016051803 ZHAO W, PAN Y Z, LAN T, et al. Analysis of heavy metals and antibiotics content in Hainan commercial organic fertilizers[J]. Environmental Chemistry, 2017, 36(2): 408-419 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016051803
[26] AGWUH K N, MACGOWAN A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines[J]. Journal Antimicrobial Chemotherapy, 2006, 58(2): 256-265. doi: 10.1093/jac/dkl224 [27] 成登苗, 李兆君, 张雪莲, 等. 畜禽粪便中兽用抗生素削减方法的研究进展[J]. 中国农业科学, 2018, 51(17): 3335-3552. doi: 10.3864/j.issn.0578-1752.2018.17.009 CHENG D M, LI Z J, ZHANG X L, et al. Removal of Veterinary Antibiotics in Livestock and Poultry Manure: A Review[J]. Scientia Agricultura Sinica, 2018, 51(17): 3335-3352 (in Chinese). doi: 10.3864/j.issn.0578-1752.2018.17.009
[28] WANG H, CHU Y X, FANG C R. Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(4): 472-477. doi: 10.1007/s00128-017-2052-3 [29] BIN HO Y, ZAKARIA M P, LATIF P A, et al. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia[J]. Science of the Total Environment, 2014, 488/489: 261-267. doi: 10.1016/j.scitotenv.2014.04.109 [30] ZHI S L, SHEN S Z, ZHOU J, et al. Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: Focused on family livestock farms in Erhai Lake Basin, Yunnan, China[J]. Environmental Pollution, 2020, 267: 115539. doi: 10.1016/j.envpol.2020.115539 [31] WANG G Y, LI G X, CHANG J L, et al. Enrichment of antibiotic resistance genes after sheep manure aerobic heap composting[J]. Bioresource Technology, 2021, 323: 124620. doi: 10.1016/j.biortech.2020.124620 [32] BAO Y Y, ZHOU Q X, GUAN L Z, et al. Depletion of chlortetracycline during composting of aged and spiked manures[J]. Waste Management, 2009, 29(4): 1416-1423. doi: 10.1016/j.wasman.2008.08.022 [33] YU Y S, CHEN L J, FANG Y, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862. doi: 10.1016/j.jhazmat.2019.120862 [34] 朱满兴, 杨军香. 畜禽粪便资源化利用技术-种养结合模式[M]. 北京: 中国农业科学技术出版社, 2016. ZHU M X, YANG J X. Resource utilization technology of livestock and poultry manure-combination mode of planting and breeding[M]. Beijing: China Agricultural Science and Technology Press, 2016 (in Chinese).
[35] STALEY Z R, WOODBURY B L, STROMER B S, et al. Stockpiling versus composting: Effectiveness in reducing antibiotic-resistant bacteria and resistance genes in beef cattle manure[J]. Applied and Environmental Microbiology, 2021, 87(16): e0075021. doi: 10.1128/AEM.00750-21 [36] REHMAN M S U, RASHID N, ASHFAQ M, et al. Global risk of pharmaceutical contamination from highly populated developing countries[J]. Chemosphere, 2015, 138: 1045-1055. doi: 10.1016/j.chemosphere.2013.02.036 [37] WEI R C, GE F, ZHANG L L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China[J]. Chemosphere, 2016, 144: 2377-2383. doi: 10.1016/j.chemosphere.2015.10.126 [38] JECHALKE S, HEUER H, SIEMENS J, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology, 2014, 22(9): 536-545. doi: 10.1016/j.tim.2014.05.005 [39] LI C, CHEN J Y, WANG J H, et al. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 2015, 521/522: 101-107. doi: 10.1016/j.scitotenv.2015.03.070 [40] PRUDEN A, LARSSON D G, AMÉZQUITA A, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment[J]. Environmental Health Perspectives, 2013, 121(8): 878-885. doi: 10.1289/ehp.1206446 [41] PALMER A C, ANGELINO E, KISHONY R. Chemical decay of an antibiotic inverts selection for resistance[J]. Nature Chemical Biology, 2010, 6(2): 105-107. doi: 10.1038/nchembio.289