-
土壤背景值(以下简称“背景值”),指在未受到人为干扰土壤成分的组成和各组分(元素)的含量[1]. 地球化学背景(Geochemical Background)的概念起源于勘查地球化学,是指无矿地质体中元素的正常丰度或者一个地区元素含量的正常变化[2 − 3]. 研究土壤背景值,有助于准确把握土地实际状况,对相关行业及标准的制定具有十分重要的参考价值. 土壤环境背景值和临界值的研究是环境土壤学研究的一项重要的基础工作,它对于评价土壤环境质量,确定土壤的环境容量等起着重要的作用[4],还是指导土壤重金属污染监测、评价及治理工作的基础[5]. 土壤重金属污染的隐蔽性和滞后性已然成为危害民众健康的隐形杀手,这主要涉及到“农用地-粮食安全”和“建设用地-人居环境”的健康发展,是关乎国家发展战略的重要基础保障. 此前,许多国家都开展了土壤背景值的研究工作[6 − 8]. 1982年国家将环境背景值调查研究列入“六五”科技攻关项目,在国家环保局、中国环境监测总站牵头下完成了对松辽平原土壤环境背景值调查的研究工作[9]. 1986年国家"七五"科技攻关计划实施期间完成了“全国土壤环境背景值调查研究”的相关课题[10],此后出版的《中国土壤元素背景值》(以下简称“前人研究”)是相关研究的重要参考,但该研究在贵州省仅有50个土壤样点,对探究全省土壤重金属的本底状况不够充分.
背景值应根据数据的分布特征采用不同方法表示,在其符合正态分布的情况下,一般可用算术均值表征元素背景值;当数据符合对数正态分布的情况下,可采用几何均值表示元素背景含量的集中趋势[11]. 自从Ahrens在花岗岩中发现元素的分布服从对数正态分布以来,勘查地球化学家通过对地球化学数据分布形式(正态或对数正态)的检验,来计算地球化学背景值[12 − 13]. 夏增禄认为土壤重金属背景值应该是一个表征该元素含量集中分布趋势的特征值,而不是一个具体的数值[14]. 因此,土壤重金属的背景值该如何确定,目前并没有统一的要求[15].
本文在2018年以贵州省自然土壤的镉(Cd)、钴(Co)、铬(Cr)、铜(Cu)、锰(Mn)、镍(Ni)、铅(Pb)、锌(Zn)、砷(As)和汞(Hg)为研究对象,针对贵州省自然土壤重金属含量及分布状况进行较为全面的调查,重新提出贵州省土壤重金属的背景值,由于距 “六五”和“七五”的研究间隔较长,因此,可为今后相关科研和农业生产提供更加准确、可靠的信息.
贵州省土壤重金属背景值再研究
Redistribution of heavy metal background in soil in Guizhou Province
-
摘要: 为探究贵州省背景土重金属含量的基本状况,进行了系统的场调工作,共采集自然土样468 件. 通过统计学和对比研究的方法,在“省域尺度”、“市域尺度”和“主要土类”的3个视角下重新提出贵州省土壤重金属的背景值. 结果表明,省域推荐值分别为ω(Cd)0.220 mg·kg−1、ω(Co)12.35 mg·kg−1、ω(Cr)87.68 mg·kg−1、ω(Cu)33.70 mg·kg−1、ω(Mn)668.7 mg·kg−1、ω(Ni)33.99 mg·kg−1、ω(Pb)19.91 mg·kg−1、ω(Zn)88.88 mg·kg−1、ω(As)21.29 mg·kg−1和ω(Hg)0.151 mg·kg−1. 与《中国土壤元素背景值》相比,Hg含量提高77.41%;Cu和As含量分别提高25.28%和33.06%;而Co和Pb含量低于省域推荐值,分别降低29.83%和36.39%. 市域尺度下,贵州省背景土的重金属含量在地理空间上呈西北高、东南低的分布特点,其中,安顺市所有元素的均值水平均超过省域推荐值,超出5%—60%;而黔东南全部未超. 主要土类下,黄棕壤土和石灰土表现出对重金属较强的富集特点,其中黄棕壤土在全省的分布与市域推荐值的高值区域基本吻合,毕节的中西部、六盘水和黔西南的北部都以黄棕壤为主要土类,研究涉及的重金属含量普遍偏高. 水稻土的重金属含量受成土母质和人为因素的叠加影响,对于地质高背景区和工矿区附近,其含量水平较土类推荐值存在偏低的估计,需要开展针对性的研究工作. 省域推荐值对于了解各重金属的实际分布存在局限性,因此,市域推荐值和土类推荐值有助于识别重金属含量的区域性分布特征.Abstract: In order to explore the background value of soil heavy metals in Guizhou Province, We have conducted a systematic survey in the local, and 468 natural soil samples were collected. By means of statistics and comparative study, through the three perspectives of "province", "cities" and "main soil types", the background values of soil heavy metals in Guizhou Province are re-proposed. The recommended value of province as follows: ω(Cd)0.220 mg·kg−1, ω(Co)12.35 mg·kg−1, ω(Cr)87.68 mg·kg−1, ω(Cu)33.70 mg·kg−1, ω(Mn)668.7 mg·kg−1, ω(Ni)33.99 mg·kg−1, ω(Pb)19.91 mg·kg−1, ω(Zn)88.88 mg·kg−1, ω(As)21.29 mg·kg−1和ω(Hg)0.151 mg·kg−1. Compared with the Background Values of Soil Elements in China, the Hg content increased by 77.41%, followed by the Cu and As contents increased by 25.28% and 33.06%; while the Co and Pb contents were lower than the provincial recommended values and decreased by 29.83% and 36.39%. At the city scale, the content of heavy metals in the background soils of Guizhou Province shows a geographical distribution characteristic of high in the northwest and low in the southeast. The average levels of all elements in Anshun exceed the provincial recommended values, the excess value ranges from 5% to 60%, while those in Qiandongnan by contrast. Among the main soil types, yellow-brown soil and lime soil showed a strong trend of heavy metal enrichment, and the coverage of yellow-brown soil in the whole province was basically similar to the regional distribution of the high value of heavy metal content in the recommended value of the city. Yellow brown soil is the main soil type in the central and western parts of Bijie, Liupanshui and the northern part of Qianxinan, and the content of heavy metals involved is generally high. The content of heavy metals in paddy soil is affected by the superposition of soil parent materials and human factors. For paddy soils in high background areas and near industrial and mining areas in the province, their content levels are estimated to be lower than the recommended values for soil types, which need to be targeted to research. The provincial recommended value has a high or low estimate about the average level with a particular element in a local area. Therefore, the proposal of the recommended value about the cities and the soil types can help to better understand the regional distribution characteristics.
-
Key words:
- Guizhou Province /
- natural soil /
- the background value /
- heavy metal /
- administrative division /
- soil types.
-
表 1 贵州省自然土壤重金属含量基本统计(mg·kg−1)
Table 1. Statistical results of heavy metal content about natural soils in Guizhou Province(mg·kg−1)
名称
Name特征值
ItemsCd Co Cr Cu Mn Ni Pb Zn As Hg 原数据
Raw dataN 468 468 468 468 468 468 468 468 468 465 算术均值 0.519 14.24 94.14 47.89 857.9 41.27 26.86 106.4 33.20 0.265 几何均值 0.260 11.29 83.57 33.48 588. 6 34.13 18.88 90.55 22.02 0.147 中位数 0.220 12.08 87.25 32.38 657.5 36.19 19.91 90.25 22.48 0.148 算术标准差 1.032 10.63 48.76 47.21 778.2 29.76 60.65 89.69 58.75 0.387 几何标准差 2.790 2.072 1.648 2.335 2.660 1.879 2.173 1.689 2.209 2.989 最小值 0.033 0.356 14.07 1.523 10.56 3.147 0.370 13.32 2.719 0.003 最大值 11.40 104.9 528.8 314.0 7343 312.8 1256 1105 653.2 5.171 偏度 6.21 3.10 2.39 2.65 3.16 4.22 18.05 6.19 8.06 5.96 偏度(对数转换后) 0.88 −0.84 −0.39 −0.02 −1.01 −0.40 −0.39 0.53 0.64 −0.13 峰度 50.37 17.19 14.31 9.10 17.86 31.53 363.3 53.13 74.95 59.48 变异系数 1.99 0.75 0.52 0.99 0.91 0.72 2.26 0.84 1.77 1.46 数据(剔除一次离群值)
Data(removing one-time outliers)N 465 460 463 467 462 463 463 460 463 460 剔除比例/% 0.64 1.71 1.07 0.21 1.28 1.07 1.07 1.71 1.07 1.08 算术均值 0.458 14.25 93.88 47.99 868.9 39.84 23.91 98.84 27.87 0.256 几何均值 0.254 11.69 84.47 33.70 617.4 33.99 18.86 88.88 21.29 0.151 中位数 0.220 12.35 87.68 32.39 668.7 36.16 19.91 90.11 21.92 0.150 算术标准差 0.694 9.712 44.05 47.21 777.2 22.09 18.83 50.38 24.31 0.314 几何标准差 2.682 1.917 1.598 2.308 2.433 1.809 2.007 1.581 2.067 2.817 最小值 0.033 1.315 19.47 3.083 36.53 5.201 0.370 21.70 2.719 0.008 最大值 5.347 80.92 285.6 314.0 7343 180.3 143.1 435.1 233.1 2.345 偏度 3.72 2.39 1.25 2.65 3.19 1.28 3.02 2.36 3.21 3.05 偏度(对数转换后) 0.74 −0.41 −0.26 0.06 −0.59 −0.54 −0.64 −0.01 0.09 0.05 峰度 16.8 9.67 2.43 9.10 18.04 3.53 13.20 10.04 16.52 12.11 变异系数 1.52 0.68 0.47 0.98 0.89 0.55 0.79 0.5097 0.87 1.23 数据(多次迭代剔除离群值)
Data(removing Multi-iterate outliers)N 463 454 460 467 458 460 457 455 462 460 剔除比例/% 1.07 3.21 1.71 0.21 2.14 1.71 2.35 2.78 1.28 1.08 算术均值 0.437 14.24 94.37 47.99 876.1 40.06 24.25 97.12 27.43 0.256 几何均值 0.251 11.90 85.28 33.70 632.3 34.40 19.58 88.53 21.18 0.151 中位数 0.219 12.46 88.11 32.39 681.0 36.31 20.03 90.10 21.90 0.150 数据(多次迭代剔除离群值)
Data(removing Multi-iterate outliers)算术标准差 0.623 9.163 43.79 47.21 776.7 21.99 18.77 43.52 22.38 0.314 几何标准差 2.634 1.843 1.576 2.308 2.352 1.779 1.917 1.543 2.051 2.817 最小值 0.033 2.063 23.67 3.083 50.55 6.478 3.070 24.28 2.719 0.008 最大值 4.377 72.75 285.6 314.0 7343 180.3 143.1 299.0 163.7 2.345 偏度 3.39 2.07 1.28 2.65 3.21 1.30 3.06 1.38 2.50 3.05 偏度(对数转换后) 0.70 −0.24 −0.13 0.06 −0.46 −0.44 −0.06 −0.13 0.03 0.05 峰度 13.83 6.91 2.49 9.10 18.15 3.61 13.39 2.96 8.93 12.11 变异系数 1.42 0.64 0.46 0.98 0.89 0.55 0.77 0.45 0.82 1.23 注:N表示样本数量;偏度、 峰度、变异系数都为无量纲数据;剔除比例=(原数据的样本数量-一次或多次迭代剔除离群值后的样本数量)/原数据的样本数量×100%.
Note: N is the number of samples; The Skewness, Kurtosis and CV are all dimensionless data; Rejection ratio = (Raw data - Number of samples after one or multi-iterate of outliers were removing)/ Raw data×100% .表 2 原数据与剔除一次离群值数据的偏差(%)
Table 2. The deviation between raw data and the data with removing one-time outliers(%)
数据类型
Data types偏差
DeviationCd Co Cr Cu Mn Ni Pb Zn As Hg 中位数 Median 0.23 −2.19 −0.49 −0.03 −1.67 0.08 0.00 0.16 2.55 −1.01 算术均值 Arithmetic mean 13.33 −0.07 0.28 −0.21 −1.27 3.59 12.34 7.65 19.12 3.29 几何均值 Geometry mean 2.40 −3.42 −1.07 −0.65 −4.66 0.41 0.11 1.88 3.43 −2.28 变异系数 CV 31.09 9.48 10.40 0.20 1.40 30.06 186.77 65.35 102.80 19.45 注:偏差=(原数据-剔除一次离群值的数据)/剔除一次离群值的数据×100%.
Note: Deviation =(Raw data – The data with removing one-time outliers)/ The data with removing one-time outliers×100% .表 3 剔除一次离群值和多次迭代剔除离群值数据间的偏差(%)
Table 3. The deviation between removing one-time and removing multi-iterate outliers data(%)
数据类型
Data types偏差
DeviationCd Co Cr Cu Mn Ni Pb Zn As Hg 中位数 Median 0.16 −0.91 −0.49 0 −1.81 −0.42 −0.59 0.01 0.10 0 算术均值 Arithmetic mean 4.65 0.04 −0.51 0 −0.82 −0.55 −1.39 1.77 1.62 0 几何均值 Geometry mean 1.29 −1.79 −0.95 0 −2.36 −1.18 −3.66 0.39 0.51 0 变异系数 CV 6.57 5.94 1.12 0 0.90 1.03 1.72 13.74 6.90 0 注:偏差=(剔除一次离群值的数据-多次迭代剔除离群值的数据)/多次迭代剔除离群值的数据×100%.
Note: Deviation =(The data with removing one-time outliers – The date with removing multi-iterate outliers)/The date with removing multi-iterate outliers×100% .表 4 前人研究的相关数据(mg·kg−1) [10]
Table 4. The relevant data from previous research (mg·kg−1)
项目
Items*Cd Co Cr Cu Mn Ni Pb Zn As Hg N 50 50 50 50 50 50 50 50 50 50 算术均值Arithmetic mean 0.659 19.2 95.9 32.0 794 39.1 35.2 99.5 20.0 0.110 算术标准差Arithmetic SD 1.406 8.97 63.21 20.76 723.5 22.4 19.59 56.01 14.55 0.069 几何均值Geometry mean 0.209 17.6 84.4 26.9 529 32.9 31.3 86.9 16.0 0.085 几何标准差Geometry SD 3.778 1.50 1.60 1.81 2.7 1.88 1.60 1.68 1.93 2.25 变异系数CV 2.13 0.47 0.66 0.65 0.91 0.57 0.56 0.56 0.73 0.63 注:*N表示样本数量,变异系数为无量纲数据. Note:* N indicates the number of samples, CV is dimensionless data. 表 5 省域推荐值与前人研究的数据对比(%)
Table 5. Compare the Recommended values of province research(%)
数据类型
Data types偏差
DeviationCd Co Cr Cu Mn Ni Pb Zn As Hg Na 830 820 826 834 824 826 826 820 826 820 ωa 5.07 −29.83 3.886 25.28 −7.57 3.31 −36.39 2.28 33.06 77.41 变异系数CV −28.73 45.00 −28.91 51.35 −1.70 −2.72 40.61 −8.98 19.49 94.60 注:Na即样本量N的偏差,Na =(省域推荐值的样本量-前人研究的样本量)/前人研究的样本量×100%;ωa即土壤重金属含量ω的偏差,ωa=(省域推荐值-前人研究的几何均值)/前人研究的几何均值×100%.
Note: Na is the deviation of the sample size, Na = (Sample size of provincial recommended value - sample size of previous studies)/sample size of previous studies ×100%; ωa is the deviation of soil heavy metal content, ωa= (Provincial recommended value - geometric mean of previous studies)/Geometric mean of previous studies ×100%.表 6 贵州省各地域背景土重金属含量的数据优化及推荐值
Table 6. Optimization and recommended values of soil heavy metal content about cities in Guizhou Province
地点
Sites特征值
Items元素
ElementsCd Co Cr Cu Mn Ni Pb Zn As Hg 遵义
ZunyiN 86 86 85 87 85 86 87 86 86 84 剔除比例/% 1.15 1.15 2.30 0.00 2.30 1.15 0.00 1.15 1.15 2.33 几何均值/( mg·kg−1) 0.274 11.64 91.47 26.20 724.1 35.03 20.29 89.70 18.56 0.140 铜仁
TongrenN 81 82 81 82 83 82 80 81 83 81 剔除比例/% 2.41 1.20 2.41 1.20 0.00 1.20 3.61 2.41 0.00 0.00 几何均值/( mg·kg−1) 0.172 12.29 67.42 28.11 568.1 34.66 25.23 94.55 18.71 0.164 黔西南
QianxinanN 35 35 35 35 35 35 35 35 35 33 剔除比例/% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.94 黔西南
Qianxinan几何均值/( mg·kg−1) 0.215 13.15 126.5 68.90 750.1 42.64 18.52 98.38 31.25 0.168 黔南州
QiannanzhouN 41 40 40 40 41 40 40 41 41 42 剔除比例/% 0.00 2.44 2.44 2.44 0.00 2.44 2.44 0.00 0.00 0.00 几何均值/( mg·kg−1) 0.394 8.214 80.39 23.86 427.8 31.71 21.06 91.04 29.46 0.156 黔东南
QiandongnanN 51 52 52 52 51 52 51 52 51 52 剔除比例/% 1.92 0.00 0.00 0.00 1.92 0.00 1.92 0.00 1.92 1.89 几何均值/( mg·kg−1) 0.189 7.202 48.57 18.47 440.4 16.94 16.45 69.64 18.09 0.150 六盘水
LiupanshuiN 29 29 29 29 28 28 28 29 28 28 剔除比例/% 0.00 0.00 0.00 0.00 3.45 3.45 3.45 0.00 3.45 3.45 几何均值/( mg·kg−1) 0.398 13.57 112.2 48.41 674.1 40.38 17.67 119.7 16.30 0.109 贵阳
GuiyangN 30 30 31 31 31 31 31 31 31 31 剔除比例/% 3.23 3.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 几何均值/( mg·kg−1) 0.221 12.29 55.50 35.55 489.6 32.94 17.13 74.86 31.05 0.168 毕节
BijieN 84 84 84 85 83 83 85 84 85 85 剔除比例/% 1.18 1.18 1.18 0.00 2.35 2.35 0.00 1.18 0.00 0.00 几何均值/( mg·kg−1) 0.290 14.36 111.4 52.19 671.4 41.71 16.15 85.11 20.68 0.197 安顺
AnshunN 25 25 24 25 25 25 25 25 24 24 剔除比例/% 0.00 0.00 −4.00 0.00 0.00 0.00 0.00 0.00 −4.00 0.00 几何均值/( mg·kg−1) 0.314 12.27 102.3 49.63 766.1 45.83 20.72 105.6 30.22 0.238 注:N指剔除一次离群值后的样本数量.
Note: N is the number of samples after removing one-time outliers.表 7 主要土类下背景土重金属含量的数据优化及推荐值
Table 7. Optimization and recommended values of soil heavy metal content in main soil types
土类
Soil types项目
Items元素
ElementsCd Co Cr Cu Mn Ni Pb Zn As Hg 红壤土
Red soilN 28 28 28 28 28 28 28 27 28 26 剔除比例/% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57 0.00 3.70 几何均值/(mg·kg−1) 0.207 8.135 51.56 23.06 473.3 22.22 15.84 69.96 20.32 0.157 黄壤土
Yellow soilN 211 209 209 212 209 212 210 209 210 209 剔除比例/% 0.94 1.88 1.88 0.47 1.88 0.47 1.41 1.88 1.41 0.48 几何均值/(mg·kg−1) 0.226 11.66 82.80 35.96 604.9 33.86 17.35 87.30 20.46 0.150 黄棕壤土
Yellow-brown soilN 24 24 24 24 24 24 24 23 23 24 剔除比例/% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.17 4.17 0.00 几何均值/(mg·kg−1) 0.453 12.98 108.9 41.90 507.4 40.58 18.32 90.46 20.16 0.191 石灰土
Lime soilN 111 109 110 111 110 111 111 110 110 108 剔除比例/% 0.00 1.80 0.90 0.00 0.90 0.00 0.00 0.90 0.90 1.82 几何均值/(mg·kg−1) 0.285 11.99 90.19 30.83 740.7 35.48 21.41 92.52 21.67 0.152 水稻土
Paddy soilN 51 51 52 52 51 52 52 51 52 53 剔除比例/% 1.92 1.92 0.00 0.00 1.92 0.00 0.00 1.92 0.00 1.85 几何均值/(mg·kg−1) 0.196 11.37 82.39 34.05 537.0 35.70 23.34 90.89 24.53 0.150 紫色土
Purple soilN 14 14 14 14 14 14 14 14 14 14 剔除比例/% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 几何均值/(mg·kg−1) 0.354 12.45 67.79 33.29 714.2 32.99 14.35 86.85 13.57 0.153 注:N指剔除一次离群值后的样本数量.
Note: N is the number of samples after removing one-time outliers. -
[1] 张山岭, 杨国义, 罗薇, 等. 广东省土壤无机元素背景值的变化趋势研究[J]. 土壤, 2012, 44(6): 1009-1014. doi: 10.3969/j.issn.0253-9829.2012.06.020 ZHANG S L, YANG G Y, LUO W, et al. Changes of background values of inorganic elements in soils of gunagdong Province[J]. Soils, 2012, 44(6): 1009-1014 (in Chinese). doi: 10.3969/j.issn.0253-9829.2012.06.020
[2] HAWKES H E, WEBB J S. Geochemistry in mineral exploration[M]. New York: Harper & Row, 1962. [3] LEVINSON A A. Introduction to exploration geochemistry[M]. 2d ed Wilmette Ill : Applied Pub , 1980. [4] 许炼烽, 刘腾辉. 广东土壤环境背景值和临界含量的地带性分异[J]. 华南农业大学学报, 1996, 17(4): 58-62. XU L F, LIU T H. The zonal differentiation of soil environmental background values and critical contents in Guangdong[J]. Journal of South China Agricultural University, 1996, 17(4): 58-62. (in Chinese)
[5] 陈同斌, 郑袁明, 陈煌, 等. 北京市土壤重金属含量背景值的系统研究[J]. 环境科学, 2004, 25(1): 117-122. doi: 10.3321/j.issn:0250-3301.2004.01.026 CHEN T B, ZHENG Y M, CHEN H, et al. Background concentrations of soil heavy metals in Beijing[J]. Environmental Science, 2004, 25(1): 117-122 (in Chinese). doi: 10.3321/j.issn:0250-3301.2004.01.026
[6] ANDER E L, JOHNSON C C, CAVE M R, et al. Methodology for the determination of normal background concentrations of contaminants in English soil[J]. Science of the Total Environment, 2013, 454/455: 604-618. doi: 10.1016/j.scitotenv.2013.03.005 [7] CASTRO J E, FERNANDEZ A M, GONZALEZ-CACCIA V, et al. Concentration of trace metals in sediments and soils from protected lands in south Florida: Background levels and risk evaluation[J]. Environmental Monitoring and Assessment, 2013, 185(8): 6311-6332. doi: 10.1007/s10661-012-3027-9 [8] CHEN J S, WEI F S, ZHENG C J, et al. Background concentrations of elements in soils of China[J]. Water, Air, and Soil Pollution, 1991, 57(1): 699-712. [9] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4): 12-19, 94. doi: 10.3321/j.issn:0250-3301.1991.04.015 WEI F S, CHEN J S, WU Y Y, et al. Study on the background contents on 61 elements of soils in China[J]. Environmental Science, 1991, 12(4): 12-19, 94 (in Chinese). doi: 10.3321/j.issn:0250-3301.1991.04.015
[10] 国家环境保护局主持, 中国环境监测总站主编. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. National environmental protection agency host, China environmental monitoring station chief editor. Background values of soil elements in China [M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[11] HOLMGREN G G S, MEYER M W, CHANEY R L, et al. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America[J]. Journal of Environmental Quality, 1993, 22(2): 335-348. [12] AHRENS L H. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary)[J]. Geochimica et Cosmochimica Acta, 1954, 5(2): 49-73. doi: 10.1016/0016-7037(54)90040-X [13] AHRENS L H. A fundamental law of geochemistry[J]. Nature, 1953, 172(4390): 1148. doi: 10.1038/1721148a0 [14] 夏增禄. 土壤元素背景值及其研究方法[M]. 北京: 气象出版社, 1987. XIA Z L. Background value of soil elements and its research method[M]. Beijing: China Meteorological Press, 1987(in Chinese).
[15] 邢克孝, 杨卫东. 千山土壤中铬、汞微量元素的自然背景值研究[J]. 辽宁大学学报(自然科学版), 1986, 13((1): ): 52-56. XING K X, YANG W D. Study of the natural background values of Cr and Hg element in thousand-mountains soil[J]. Journal of Liaoning University (Natural Sciences Edition), 1986, 13(1): 52-56 (in Chinese).
[16] 陈默涵, 何腾兵, 黄会前. 贵州地形地貌对土壤类型及分布的影响[J]. 贵州大学学报(自然科学版), 2016, 33(5): 14-16, 35. CHEN M H, HE T B, HUANG H Q. The effect of landform on the types and distribution of soils in Guizhou[J]. Journal of Guizhou University (Natural Sciences), 2016, 33(5): 14-16, 35 (in Chinese).
[17] 曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37-44. CAO J H, YUAN D X, PAN G X. Some soil features in Karst ecosystem[J]. Advance in Earth Sciences, 2003, 18(1): 37-44 (in Chinese).
[18] 徐一帆, 张凯, 王源. 贵州矿产资源开发利用现状[J]. 凯里学院学报, 2016, 34(6): 139-141. XU Y F, ZHANG K, WANG Y. Present situation of development and utilization of mineral resources in Guizhou[J]. Journal of Kaili University, 2016, 34(6): 139-141 (in Chinese).
[19] 张涤. 浅析贵州矿产资源及其开发利用[J]. 贵州地质, 2003, 20(3): 150-153, 144. ZHANG D. Analysis on the mineral resources of Guizhou and its exploitation[J]. Guizhou Geology, 2003, 20(3): 150-153, 144 (in Chinese).
[20] KIMBROUGH D E, WAKAKUWA J R. Acid digestion for sediments, sludges, soils, and solid wastes. A proposed alternative to EPA SW 846 Method 3050[J]. Environmental Science & Technology, 1989, 23(7): 898-900. [21] GB-T22105.1-2008, 土壤中总汞的测定[S]. GB-T22105.1-2008, Determination of total mercury in soil[S] (in Chinese).
[22] 国家药典委员会. 中华人民共和国药典-三部: 2015年版[M]. 北京: 中国医药科技出版社, 2015. National pharmacopoeia commission. People’s republic of China (PRC) pharmacopoeia-part III: 2015 edition[M]. Beijing: China Medical Science and Technology Press, 2015(in Chinese).
[23] 魏复盛, 杨国治, 蒋德珍, 等. 中国土壤元素背景值基本统计量及其特征[J]. 中国环境监测, 1991, 7(1): 1-6. WEI F S, YANG G Z, JIANG D Z, et al. Basic statistics and characteristics of background values of soil elements in China[J]. Environmental Monitoring in China, 1991, 7(1): 1-6 (in Chinese).
[24] 王佛鹏, 宋波, 周浪, 等. 广西西江流域土壤重金属背景值再研究[J]. 环境科学学报, 2018, 38(9): 3695-3702. WANG F P, SONG B, ZHOU L, et al. Redistribution of heavy metal background in soil of Xijiang River Basin in Guangxi[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3695-3702 (in Chinese).
[25] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3): 265-306. CHENG H X, LI K, LI M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3): 265-306 (in Chinese).
[26] 梁隆超. 西南喀斯特煤矿区汞的表生环境地球化学研究[D]. 贵阳: 贵州大学, 2020. LIANG L C. Supergene environmental geochemistry of mercury in Karst coal mining areas, southwest China[D]. Guiyang: Guizhou University, 2020 (in Chinese).
[27] 黄志勇. 黔西南高砷煤与卡林型金矿成因关系研究[D]. 贵阳: 贵州大学, 2008. HUANG Z Y. Research on origin between high-arsenic coal and carlin-type gold deposit in southwestern of Guizhou Province[D]. Guiyang: Guizhou University, 2008 (in Chinese).
[28] 谢学锦, 程志中, 张立生. 中国西南地区76种元素地球化学图集[M]. 北京: 地质出版社, 2008. XIE X J, CHENG Z Z, ZHANG L S. Geochemical atlas of 76 elements in southwest China[M]. Beijing: Geological Publishing House, 2008(in Chinese).
[29] 孔祥宇, 黄国培, 程天金, 等. 贵州省稻田土壤重金属分布特征[J]. 矿物岩石地球化学通报, 2018, 37(6): 1084-1091. KONG X Y, HUANG G P, CHENG T J, et al. Distribution characteristics of heavy metals in paddy soils of Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6): 1084-1091 (in Chinese).
[30] 何邵麟, 龙超林, 刘应忠, 等. 贵州地表土壤及沉积物中镉的地球化学与环境问题[J]. 贵州地质, 2004, 21(4): 245-250. HE S L, LONG C L, LIU Y Z, et al. Geochemistry and environment of the cadmium in the soil and sediments at the surface of Guizhou Province[J]. Guizhou Geology, 2004, 21(4): 245-250 (in Chinese).
[31] 冯新斌, 洪业汤, 倪建宇, 等. 贵州煤中汞的分布、赋存状态及对环境的影响[J]. 煤田地质与勘探, 1998, 26(2): 12-14. FENG X B, HONG Y T, NI J Y, et al. Distribution and occurrence mode of mercury in some coals of Guizhou Province and its environmental impact[J]. Coal Geology & Exploration, 1998, 26(2): 12-14 (in Chinese).
[32] 何邵麟. 贵州表生沉积物地球化学背景特征[J]. 贵州地质, 1998, 15(2): 149-156. HE S L. Geochemical background of SupergeneSediments in Guizhou[J]. Guizhou Geology, 1998, 15(2): 149-156 (in Chinese).
[33] 杨寒雯, 刘秀明, 刘方, 等. 喀斯特高镉地质背景区水稻镉的富集、转运特征与机理[J]. 地球与环境, 2021, 49(1): 18-24. YANG H W, LIU X M, LIU F, et al. Translocation and accumulation of cadmium in rice in a Karst area with high geochemical background and its mechanism[J]. Earth and Environment, 2021, 49(1): 18-24 (in Chinese).
[34] 田嘉禹, 刘俐, 汪群慧, 等. 中美土壤元素背景值调查研究中数理统计方法运用及影响[J]. 环境科学研究, 2020, 33(3): 718-727. TIAN J Y, LIU L, WANG Q H, et al. Application and impact of statistic methods on the soil background values in China and the United States[J]. Research of Environmental Sciences, 2020, 33(3): 718-727 (in Chinese).
[35] 马玉, 李团结, 高全洲, 等. 珠江口沉积物重金属背景值及其污染研究[J]. 环境科学学报, 2014, 34(3): 712-719. MA Y, LI T J, GAO Q Z, et al. Background values and contamination of heavy metals in sediments from the Pearl River Estuary[J]. Acta Scientiae Circumstantiae, 2014, 34(3): 712-719 (in Chinese).
[36] 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5): 1538-1544. LUO H, LIU X M, WANG S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5): 1538-1544 (in Chinese).
[37] 盛茂银, 刘洋, 熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报, 2013, 33(19): 6303-6313. doi: 10.5846/stxb201305080979 SHENG M Y, LIU Y, XIONG K N. Response of soil physical-chemical properties to rocky desertification succession in South China Karst[J]. Acta Ecologica Sinica, 2013, 33(19): 6303-6313 (in Chinese). doi: 10.5846/stxb201305080979
[38] 王勇辉, 焦黎. 中国夏尔希里土壤环境背景值特征及评价[J]. 土壤通报, 2015, 46(3): 754-761. doi: 10.19336/j.cnki.trtb.2015.03.039 WANG Y H, JIAO L. Characteristics and evaluation of the environmental background of soil in xarxili of China[J]. Chinese Journal of Soil Science, 2015, 46(3): 754-761 (in Chinese). doi: 10.19336/j.cnki.trtb.2015.03.039