微塑料对斑马鱼的毒性效应及机制研究进展

李昕桐, 丁平, 孙雅楠, 向重丹, 朱俊彦, 陈海波, 胡国成. 微塑料对斑马鱼的毒性效应及机制研究进展[J]. 环境化学, 2024, 43(6): 1792-1804. doi: 10.7524/j.issn.0254-6108.2022121901
引用本文: 李昕桐, 丁平, 孙雅楠, 向重丹, 朱俊彦, 陈海波, 胡国成. 微塑料对斑马鱼的毒性效应及机制研究进展[J]. 环境化学, 2024, 43(6): 1792-1804. doi: 10.7524/j.issn.0254-6108.2022121901
LI Xintong, DING Ping, SUN Yanan, XIANG Chongdan, ZHU Junyan, CHEN Haibo, HU Guocheng. Research status of microplastics for zebrafish on the toxicity and mechanism[J]. Environmental Chemistry, 2024, 43(6): 1792-1804. doi: 10.7524/j.issn.0254-6108.2022121901
Citation: LI Xintong, DING Ping, SUN Yanan, XIANG Chongdan, ZHU Junyan, CHEN Haibo, HU Guocheng. Research status of microplastics for zebrafish on the toxicity and mechanism[J]. Environmental Chemistry, 2024, 43(6): 1792-1804. doi: 10.7524/j.issn.0254-6108.2022121901

微塑料对斑马鱼的毒性效应及机制研究进展

    通讯作者: E-mail:huguocheng@scies.org
  • 基金项目:
    国家重点研发计划课题(2022YFC3902102)资助.
  • 中图分类号: X-1;O6

Research status of microplastics for zebrafish on the toxicity and mechanism

    Corresponding author: HU Guocheng, huguocheng@scies.org
  • Fund Project: the National Program on Key Basic Research Project(2022YFC3902102).
  • 摘要: 塑料污染已成为全球性重大环境问题,受到国际的广泛关注. 2022年,我国将微塑料(microplastics,MPs)列为四大新污染物之一. MPs是指直径小于5 mm的塑料颗粒,具有生物毒性、环境持久性、生物累积性等特征,其生产和使用与人类生活息息相关,对生态环境和人体健康存在较大风险. 在水环境中,MPs易被水生动物摄取产生毒性效应,并沿食物链富集和放大. 斑马鱼是被广泛使用的毒理学模型,具有成本低、产卵率高、易饲养等特点,与人类的基因序列有很高的同源性. 本文综述了国内外文章,阐述微塑料在斑马鱼体内的富集情况,归纳了微塑料对斑马鱼的生物毒性效应,总结了微塑料对斑马鱼的毒性作用机制,并从三个方面展望了未来的研究方向,为进一步开展微塑料的生物毒性效应、机制研究以及生态风险提供理论支撑和参考.
  • 加载中
  • 表 1  微塑料对斑马鱼的累积及毒性效应研究情况

    Table 1.  Study on the cumulative and toxic effects of microplastics on zebrafish

    阶段
    Stage
    类型
    Type of
    MPs
    粒径/μm
    Shape and
    size
    暴露浓度/
    ( mg·L−1
    Exposure
    concentration
    累积部位
    Site of
    accumulation
    暴露时间/d
    Duration of
    exposure
    毒性效应
    Effects
    参考文献
    References
    胚胎 PS 20×10−3 5 死亡率上升
    DNA损伤
    [43]
    胚胎 PS 25×10−3 , 50×10−3 , 250×10−3 , 700×10−3 5, 25, 50 肠道, 表皮, 眼睛 2 PS在肠道、表皮、眼睛等器官中的累积 [23]
    胚胎 PE 3 核苷酸切除修复(NER)和转化生长因子β(TGF-β)信号通路改变 [44]
    胚胎 PS 50×10−3 —100×10−3 1×10−3, 1 4 存在天然酸性有机物的情况下,MPs的活性氧(ROS)水平协同增加 [45]
    胚胎 PS 50×10−3 , 200×10−3 , 500×10−3 10×10−3 绒毛膜 1 PS在富含脂质的区域生物累积
    MPs和Au协同加剧发育异常、存活率、孵化率以及ROS增加
    [19]
    胚胎 PS 0.5 1 肠道 2 环氧化酶(COX)活性和超氧化物歧化酶(SOD)的诱导显著降低 [46]
    胚胎,幼鱼 PS 51×10−3 0.1, 1, 10 胚胎-绒毛膜
    幼鱼-卵黄,脑,
    心包,胃肠道
    5 心率降低、游泳行为改变 [20]
    胚胎,幼鱼 PS 0.7 5 5 补体途径基因(cfhl3、cfhl4、cfb和c9)的上调 [31]
    胚胎,幼鱼 PS 1 0.1, 1 胚胎-绒毛膜
    幼鱼-口腔,
    胃,肠道
    5 游泳能力下降
    il1b、cat的表达上调
    [21]
    胚胎,幼鱼 PE 38. 26±15. 64 6.2, 12.5,
    25, 50, 100
    6 胚胎早期孵化
    幼鱼存活率低
    形态学参数发生显著变化
    [35]
    幼鱼 PS 25×10−3 0.2, 2, 20 肠,胰腺,胆囊 2 葡萄糖水平降低,皮质醇分泌增加
    运动活动异常
    [47]
    幼鱼 PS 5—50 0.1, 1 肠道 7 微生物组的改变
    CAT和GSH含量显著降低
    糖脂和能量代谢紊乱
    [48]
    幼鱼 PE 10—45 5, 20 肠道 14 对幼鱼发育和生长没有影响
    幼鱼基因表达发生短暂而广泛的变化
    [49]
    成鱼 PS 50×10−3 1 头部,内脏,
    鳃,肌肉
    3 增加头部和内脏对BPA的摄取
    抑制乙酰胆碱酯酶(AChE)活性
    髓鞘、微管蛋白/基因表达、多巴胺含量、manf mRNA表达上调
    [25]
    成鱼 PS 70×10−3 0.5,1.5 性腺,肠道,
    肝脏,大脑
    7 脂质和能量代谢紊乱
    ROS增加和ATP水平降低
    抑制乙酰胆碱酯酶、多巴胺、褪黑素、褪黑素、氨基丁酸、5-羟色胺、加压素、kisspeptin和催产素
    [37]
    成鱼 PS 70×10−3, 5, 20 20 5μm–鳃,肝,肠道
    20μm–鳃,肠道
    7 肝脏炎症和脂质堆积
    超氧化物歧化酶和过氧化氢酶活性增加
    肝脏代谢改变
    [27]
    成鱼 PS 0.1, 5, 200 0.5 肠道 21 肠道免疫细胞功能障碍
    吞噬细胞产生的ROS相关基因表达改变,增加分泌细胞的黏液分泌
    特异性改变巨噬细胞溶酶体和细胞表面受体信号转导过程
    [50]
    成鱼 PA, PE, PP, PVC, PS 0.1, 1, 5 (PS), 70 (PA, PE, PP, PVC) 0.001, 0.01, 0.1, 1.0 , 10.0 10 类型依赖性致死效应
    小肠损伤伴绒毛破裂和肠细胞分裂
    在鳃、肝和肾中未观察到组织学损伤
    [51]
    成鱼 PS 0.1, 20 0.2 肠道>肝脏>鳃 3 MPs和天然有机物(NOM)加剧肝脏和内脏中铜的累积
    丙二醛(MDA)、金属硫蛋白(MT)水平升高,SOD水平降低
    [29]
    成鱼 PS 0.5, 50 0.1, 1 14 类杆菌和变形杆菌减少,厚壁菌增加
    肠道IL1α、IL1β和IFN的蛋白水平显著升高
    [52]
    成鱼 PS 5 20×10−3 , 100×10−3 21 葡萄糖、丙酮酸、α-酮戊二酸和异柠檬酸脱氢酶下降 [38]
    成鱼 PS 5 50×10−3 , 500×10−3 肠道>肝脏>鳃 21 肠壁变薄和充血性炎症、绒毛损伤和上皮损伤.
    肠道微生物群落的变化
    CAT、SOD活性和D-乳酸水平升高
    [53]
    成鱼 PE 10—22, 45—53, 90—106, 212—250, 500—600 2 肠,鳃 4 癫痫发作和形态学变化(尾巴向下弯曲)
    cyp1a和vtg1上调
    [33]
    成鱼 PS 微珠(15),碎片,纤维(25) 10×10−3 肠道 21 形状依赖性积聚——纤维、碎片、珠子
    肠黏膜损伤(D-Lac降低)和炎症(IL-1α升高)
    氧化应激(SOD活性升高)
    肠道通透性增加和肠道菌群失调
    [28]
    成鱼 PS 90% < 90; 50% < 50; 10% < 25 0.1, 1 20 免疫反应或细胞增殖的一般激活基因上调 [36]
    成鱼 PE 125—250 21 prdx1、gstp1、chrna、ngn1、cyp1a1的过度表达 [54]
    成鱼、幼鱼、
    胚胎
    PS 42×10−3 4.5、9、12 大脑、肌肉和睾丸的GR活性降低 [22]
    成鱼、幼鱼、
    胚胎
    PS 1—5, 10—20 成鱼-鳃
    幼鱼-肠道,
    胚胎,绒毛膜
    4 通过附着到上皮细胞转移POPs
    cyp1a诱导
    [11]
      注:PE为聚乙烯, PVC为聚氯乙烯,PA为聚酰胺,PP为聚丙烯.
      Note: PE (Polyethylene), PVC (Polyvinyl chloride), PA (Polyamide), and PP (Polypropylene).
    阶段
    Stage
    类型
    Type of
    MPs
    粒径/μm
    Shape and
    size
    暴露浓度/
    ( mg·L−1
    Exposure
    concentration
    累积部位
    Site of
    accumulation
    暴露时间/d
    Duration of
    exposure
    毒性效应
    Effects
    参考文献
    References
    胚胎 PS 20×10−3 5 死亡率上升
    DNA损伤
    [43]
    胚胎 PS 25×10−3 , 50×10−3 , 250×10−3 , 700×10−3 5, 25, 50 肠道, 表皮, 眼睛 2 PS在肠道、表皮、眼睛等器官中的累积 [23]
    胚胎 PE 3 核苷酸切除修复(NER)和转化生长因子β(TGF-β)信号通路改变 [44]
    胚胎 PS 50×10−3 —100×10−3 1×10−3, 1 4 存在天然酸性有机物的情况下,MPs的活性氧(ROS)水平协同增加 [45]
    胚胎 PS 50×10−3 , 200×10−3 , 500×10−3 10×10−3 绒毛膜 1 PS在富含脂质的区域生物累积
    MPs和Au协同加剧发育异常、存活率、孵化率以及ROS增加
    [19]
    胚胎 PS 0.5 1 肠道 2 环氧化酶(COX)活性和超氧化物歧化酶(SOD)的诱导显著降低 [46]
    胚胎,幼鱼 PS 51×10−3 0.1, 1, 10 胚胎-绒毛膜
    幼鱼-卵黄,脑,
    心包,胃肠道
    5 心率降低、游泳行为改变 [20]
    胚胎,幼鱼 PS 0.7 5 5 补体途径基因(cfhl3、cfhl4、cfb和c9)的上调 [31]
    胚胎,幼鱼 PS 1 0.1, 1 胚胎-绒毛膜
    幼鱼-口腔,
    胃,肠道
    5 游泳能力下降
    il1b、cat的表达上调
    [21]
    胚胎,幼鱼 PE 38. 26±15. 64 6.2, 12.5,
    25, 50, 100
    6 胚胎早期孵化
    幼鱼存活率低
    形态学参数发生显著变化
    [35]
    幼鱼 PS 25×10−3 0.2, 2, 20 肠,胰腺,胆囊 2 葡萄糖水平降低,皮质醇分泌增加
    运动活动异常
    [47]
    幼鱼 PS 5—50 0.1, 1 肠道 7 微生物组的改变
    CAT和GSH含量显著降低
    糖脂和能量代谢紊乱
    [48]
    幼鱼 PE 10—45 5, 20 肠道 14 对幼鱼发育和生长没有影响
    幼鱼基因表达发生短暂而广泛的变化
    [49]
    成鱼 PS 50×10−3 1 头部,内脏,
    鳃,肌肉
    3 增加头部和内脏对BPA的摄取
    抑制乙酰胆碱酯酶(AChE)活性
    髓鞘、微管蛋白/基因表达、多巴胺含量、manf mRNA表达上调
    [25]
    成鱼 PS 70×10−3 0.5,1.5 性腺,肠道,
    肝脏,大脑
    7 脂质和能量代谢紊乱
    ROS增加和ATP水平降低
    抑制乙酰胆碱酯酶、多巴胺、褪黑素、褪黑素、氨基丁酸、5-羟色胺、加压素、kisspeptin和催产素
    [37]
    成鱼 PS 70×10−3, 5, 20 20 5μm–鳃,肝,肠道
    20μm–鳃,肠道
    7 肝脏炎症和脂质堆积
    超氧化物歧化酶和过氧化氢酶活性增加
    肝脏代谢改变
    [27]
    成鱼 PS 0.1, 5, 200 0.5 肠道 21 肠道免疫细胞功能障碍
    吞噬细胞产生的ROS相关基因表达改变,增加分泌细胞的黏液分泌
    特异性改变巨噬细胞溶酶体和细胞表面受体信号转导过程
    [50]
    成鱼 PA, PE, PP, PVC, PS 0.1, 1, 5 (PS), 70 (PA, PE, PP, PVC) 0.001, 0.01, 0.1, 1.0 , 10.0 10 类型依赖性致死效应
    小肠损伤伴绒毛破裂和肠细胞分裂
    在鳃、肝和肾中未观察到组织学损伤
    [51]
    成鱼 PS 0.1, 20 0.2 肠道>肝脏>鳃 3 MPs和天然有机物(NOM)加剧肝脏和内脏中铜的累积
    丙二醛(MDA)、金属硫蛋白(MT)水平升高,SOD水平降低
    [29]
    成鱼 PS 0.5, 50 0.1, 1 14 类杆菌和变形杆菌减少,厚壁菌增加
    肠道IL1α、IL1β和IFN的蛋白水平显著升高
    [52]
    成鱼 PS 5 20×10−3 , 100×10−3 21 葡萄糖、丙酮酸、α-酮戊二酸和异柠檬酸脱氢酶下降 [38]
    成鱼 PS 5 50×10−3 , 500×10−3 肠道>肝脏>鳃 21 肠壁变薄和充血性炎症、绒毛损伤和上皮损伤.
    肠道微生物群落的变化
    CAT、SOD活性和D-乳酸水平升高
    [53]
    成鱼 PE 10—22, 45—53, 90—106, 212—250, 500—600 2 肠,鳃 4 癫痫发作和形态学变化(尾巴向下弯曲)
    cyp1a和vtg1上调
    [33]
    成鱼 PS 微珠(15),碎片,纤维(25) 10×10−3 肠道 21 形状依赖性积聚——纤维、碎片、珠子
    肠黏膜损伤(D-Lac降低)和炎症(IL-1α升高)
    氧化应激(SOD活性升高)
    肠道通透性增加和肠道菌群失调
    [28]
    成鱼 PS 90% < 90; 50% < 50; 10% < 25 0.1, 1 20 免疫反应或细胞增殖的一般激活基因上调 [36]
    成鱼 PE 125—250 21 prdx1、gstp1、chrna、ngn1、cyp1a1的过度表达 [54]
    成鱼、幼鱼、
    胚胎
    PS 42×10−3 4.5、9、12 大脑、肌肉和睾丸的GR活性降低 [22]
    成鱼、幼鱼、
    胚胎
    PS 1—5, 10—20 成鱼-鳃
    幼鱼-肠道,
    胚胎,绒毛膜
    4 通过附着到上皮细胞转移POPs
    cyp1a诱导
    [11]
      注:PE为聚乙烯, PVC为聚氯乙烯,PA为聚酰胺,PP为聚丙烯.
      Note: PE (Polyethylene), PVC (Polyvinyl chloride), PA (Polyamide), and PP (Polypropylene).
    下载: 导出CSV
  • [1] PLASTICSEUROPE. Plastics – the Facts 2020. [EB/OL]. [2022-12-19].
    [2] ZHANG C N, WANG J, ZHOU A G, et al. Species-specific effect of microplastics on fish embryos and observation of toxicity kinetics in larvae[J]. Journal of Hazardous Materials, 2021, 403: 123948. doi: 10.1016/j.jhazmat.2020.123948
    [3] CUNNINGHAM E M, EHLERS S M, DICK J T A, et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from Antarctica and the southern ocean[J]. Environmental Science & Technology, 2020, 54(21): 13661-13671.
    [4] FENG S S, LU H W, YAO T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. Journal of Hazardous Materials, 2021, 417: 126034. doi: 10.1016/j.jhazmat.2021.126034
    [5] ZHANG Y L, GAO T, KANG S C, et al. Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics[J]. Science of the Total Environment, 2021, 758: 143634. doi: 10.1016/j.scitotenv.2020.143634
    [6] PARKER B W, BECKINGHAM B A, INGRAM B C, et al. Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk[J]. Marine Pollution Bulletin, 2020, 160: 111539. doi: 10.1016/j.marpolbul.2020.111539
    [7] OUYANG X G, DUARTE C M, CHEUNG S G, et al. Fate and effects of macro- and microplastics in coastal wetlands[J]. Environmental Science & Technology, 2022, 56(4): 2386-2397.
    [8] PESTANA C J, MOURA D S, CAPELO-NETO J, et al. Potentially poisonous plastic particles: Microplastics as a vector for cyanobacterial toxins microcystin-LR and microcystin-LF[J]. Environmental Science & Technology, 2021, 55(23): 15940-15949.
    [9] WANG Y H, YANG Y N, LIU X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity[J]. Environmental Science & Technology, 2021, 55(23): 15579-15595.
    [10] PANNETIER P, MORIN B, Le BIHANIC F, et al. Environmental samples of microplastics induce significant toxic effects in fish larvae[J]. Environment International, 2020, 134: 105047. doi: 10.1016/j.envint.2019.105047
    [11] BATEL A, BORCHERT F, REINWALD H, et al. Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos[J]. Environmental Pollution, 2018, 235: 918-930. doi: 10.1016/j.envpol.2018.01.028
    [12] TREVISAN R, VOY C, CHEN S X, et al. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish[J]. Environmental Science & Technology, 2019, 53(14): 8405-8415.
    [13] 丁平, 张丽娟, 黄道建, 等. 微塑料对海洋生物的毒性效应及机理研究进展[J]. 海洋湖沼通报, 2021, 43(2): 144-153. doi: 10.13984/j.cnki.cn37-1141.2021.02.019

    DING P, ZHANG L J, HUANG D J, et al. Toxic effect and mechanism of microplastics on marine organisms[J]. Transactions of Oceanology and Limnology, 2021, 43(2): 144-153 (in Chinese). doi: 10.13984/j.cnki.cn37-1141.2021.02.019

    [14] ZHAO Y P, QIAO R X, ZHANG S Y, et al. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2021, 403: 123663. doi: 10.1016/j.jhazmat.2020.123663
    [15] ZITOUNI N, BOUSSERRHINE N, MISSAWI O, et al. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax[J]. Journal of Hazardous Materials, 2021, 403: 124055. doi: 10.1016/j.jhazmat.2020.124055
    [16] KIM J H, YU Y B, CHOI J H. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review[J]. Journal of Hazardous Materials, 2021, 413: 125423. doi: 10.1016/j.jhazmat.2021.125423
    [17] RAWSON D M, ZHANG T, KALICHARAN D, et al. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: A consideration of the structural and functional relationships with respect to cryoprotectant penetration[J]. Aquaculture Research, 2000, 31(3): 325-336. doi: 10.1046/j.1365-2109.2000.00401.x
    [18] DUAN Z H, DUAN X Y, ZHAO S, et al. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development[J]. Journal of Hazardous Materials, 2020, 395: 122621. doi: 10.1016/j.jhazmat.2020.122621
    [19] LEE W S, CHO H J, KIM E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos[J]. Nanoscale, 2019, 11(7): 3173-3185. doi: 10.1039/C8NR09321K
    [20] PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194: 185-194. doi: 10.1016/j.aquatox.2017.11.017
    [21] QIANG L Y, CHENG J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 176: 226-233. doi: 10.1016/j.ecoenv.2019.03.088
    [22] PITT J A, TREVISAN R, MASSARSKY A, et al. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene[J]. Science of the Total Environment, 2018, 643: 324-334. doi: 10.1016/j.scitotenv.2018.06.186
    [23] Van POMEREN M, BRUN N R, PEIJNENBURG W J G M, et al. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages[J]. Aquatic Toxicology, 2017, 190: 40-45. doi: 10.1016/j.aquatox.2017.06.017
    [24] YU F, YANG C F, ZHU Z L, et al. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment[J]. Science of the Total Environment, 2019, 694: 133643. doi: 10.1016/j.scitotenv.2019.133643
    [25] CHEN Q Q, YIN D Q, JIA Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1312-1321. doi: 10.1016/j.scitotenv.2017.07.144
    [26] KARAMI A, GROMAN D B, WILSON S P, et al. Biomarker responses in zebrafish (Danio rerio) larvae exposed to pristine low-density polyethylene fragments[J]. Environmental Pollution, 2017, 223: 466-475. doi: 10.1016/j.envpol.2017.01.047
    [27] LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7): 4054-4060.
    [28] QIAO R X, DENG Y F, ZHANG S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236: 124334. doi: 10.1016/j.chemosphere.2019.07.065
    [29] QIAO R X, LU K, DENG Y F, et al. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish[J]. Science of the Total Environment, 2019, 682: 128-137. doi: 10.1016/j.scitotenv.2019.05.163
    [30] SKJOLDING L M, AŠMONAITĖ G, JØLCK R I, et al. An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy[J]. Nanotoxicology, 2017, 11(3): 351-359. doi: 10.1080/17435390.2017.1306128
    [31] VENEMAN W J, SPAINK H P, BRUN N R, et al. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae[J]. Aquatic Toxicology, 2017, 190: 112-120. doi: 10.1016/j.aquatox.2017.06.014
    [32] CHEN Q Q, LACKMANN C, WANG W Y, et al. Microplastics lead to hyperactive swimming behaviour in adult zebrafish[J]. Aquatic Toxicology, 2020, 224: 105521. doi: 10.1016/j.aquatox.2020.105521
    [33] MAK C W, CHING-FONG YEUNG K, CHAN K M. Acute toxic effects of polyethylene microplastic on adult zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109442. doi: 10.1016/j.ecoenv.2019.109442
    [34] CHEN Q Q, GUNDLACH M, YANG S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. Science of the Total Environment, 2017, 584/585: 1022-1031. doi: 10.1016/j.scitotenv.2017.01.156
    [35] MALAFAIA G, de SOUZA A M, PEREIRA A C, et al. Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems[J]. Science of the Total Environment, 2020, 700: 134867. doi: 10.1016/j.scitotenv.2019.134867
    [36] LIMONTA G, MANCIA A, BENKHALQUI A, et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish[J]. Scientific Reports, 2019, 9(1): 1-11. doi: 10.1038/s41598-018-37186-2
    [37] SARASAMMA S, AUDIRA G, SIREGAR P, et al. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure[J]. International Journal of Molecular Sciences, 2020, 21(4): 1410. doi: 10.3390/ijms21041410
    [38] ZHAO Y, BAO Z W, WAN Z Q, et al. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish[J]. Science of the Total Environment, 2020, 710: 136279. doi: 10.1016/j.scitotenv.2019.136279
    [39] XIE J, FARAGE E, SUGIMOTO M, et al. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development[J]. BMC Developmental Biology, 2010, 10: 76. doi: 10.1186/1471-213X-10-76
    [40] RAFTIS J B, MILLER M R. Nanoparticle translocation and multi-organ toxicity: A particularly small problem[J]. Nano Today, 2019, 26: 8-12. doi: 10.1016/j.nantod.2019.03.010
    [41] GEISER M, ROTHEN-RUTISHAUSER B, KAPP N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells[J]. Environmental Health Perspectives, 2005, 113(11): 1555-1560. doi: 10.1289/ehp.8006
    [42] MATTSSON K, JOHNSON E V, MALMENDAL A, et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain[J]. Scientific Reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x
    [43] SÖKMEN T Ö, SULUKAN E, TÜRKOĞLU M, et al. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio)[J]. NeuroToxicology, 2020, 77: 51-59. doi: 10.1016/j.neuro.2019.12.010
    [44] KIM Y, JEONG J, LEE S, et al. Identification of adverse outcome pathway related to high-density polyethylene microplastics exposure: Caenorhabditis elegans transcription factor RNAi screening and zebrafish study[J]. Journal of Hazardous Materials, 2020, 388: 121725. doi: 10.1016/j.jhazmat.2019.121725
    [45] LIU Y P, LU M X, ZHANG X W, et al. Shift of the microbial communities from exposed sandstone rocks to forest soils during pedogenesis[J]. International Biodeterioration & Biodegradation, 2019, 140: 21-28.
    [46] PARENTI C C, GHILARDI A, DELLA TORRE C, et al. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects[J]. Environmental Pollution, 2019, 254: 112947. doi: 10.1016/j.envpol.2019.07.115
    [47] BRUN N R, van HAGE P, HUNTING E R, et al. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish[J]. Communications Biology, 2019, 2(1): 1-9. doi: 10.1038/s42003-018-0242-0
    [48] WAN Z Q, WANG C Y, ZHOU J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217: 646-658. doi: 10.1016/j.chemosphere.2018.11.070
    [49] LeMOINE C M R, KELLEHER B M, LAGARDE R, et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio)[J]. Environmental Pollution, 2018, 243: 591-600. doi: 10.1016/j.envpol.2018.08.084
    [50] GU W Q, LIU S, CHEN L, et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines[J]. Environmental Science & Technology, 2020, 54(6): 3417-3427.
    [51] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103
    [52] JIN Y X, XIA J Z, PAN Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235: 322-329. doi: 10.1016/j.envpol.2017.12.088
    [53] QIAO R X, SHENG C, LU Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 2019, 662: 246-253. doi: 10.1016/j.scitotenv.2019.01.245
    [54] RAINIERI S, CONLLEDO N, LARSEN B K, et al. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 2018, 162: 135-143. doi: 10.1016/j.envres.2017.12.019
    [55] ONG K J, ZHAO X X, THISTLE M E, et al. Mechanistic insights into the effect of nanoparticles on zebrafish hatch[J]. Nanotoxicology, 2014, 8(3): 295-304. doi: 10.3109/17435390.2013.778345
    [56] RANDLETT O, WEE C L, NAUMANN E A, et al. Whole-brain activity mapping onto a zebrafish brain atlas[J]. Nature Methods, 2015, 12(11): 1039-1046. doi: 10.1038/nmeth.3581
    [57] WULLIMANN M F. Secondary neurogenesis and telencephalic organization in zebrafish and mice: A brief review[J]. Integrative Zoology, 2009, 4(1): 123-133. doi: 10.1111/j.1749-4877.2008.00140.x
    [58] DEMIN K A, TARANOV A S, ILYIN N P, et al. Understanding neurobehavioral effects of acute and chronic stress in zebrafish[J]. Stress, 2021, 24(1): 1-18. doi: 10.1080/10253890.2020.1724948
    [59] BHAGAT J, ZANG L Q, NISHIMURA N, et al. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity[J]. The Science of the Total Environment, 2020, 728: 138707. doi: 10.1016/j.scitotenv.2020.138707
    [60] DAYAL N, THAKUR M, PATIL P, et al. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio)[J]. Journal of Nanoparticle Research, 2016, 18(10): 291. doi: 10.1007/s11051-016-3549-0
    [61] 武芳竹, 曾江宁, 徐晓群, 等. 海洋微塑料污染现状及其对鱼类的生态毒理效应[J]. 海洋学报, 2019, 41(2): 85-98.

    WU F Z, ZENG J N, XU X Q, et al. Status of marine microplastic pollution and its ecotoxicological effects on marine fish[J]. Haiyang Xuebao, 2019, 41(2): 85-98 (in Chinese).

    [62] WANG R L, SONG B, WU J R, et al. Potential adverse effects of nanoparticles on the reproductive system[J]. International Journal of Nanomedicine, 2018, 13: 8487-8506. doi: 10.2147/IJN.S170723
    [63] MA Y B, LU C J, JUNAID M, et al. Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish[J]. Chemosphere, 2018, 207: 320-328. doi: 10.1016/j.chemosphere.2018.05.019
    [64] WANG P P, ZHAO Y. Plasticizer Exposure and Reproductive Health: Phthalates and Bisphenol A[M]//Zhang Y. Emerging Chemicals and Human Health. Singapore: Springer, 2019: 49-67.
    [65] BAKIR A, ROWLAND S J, THOMPSON R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185: 16-23. doi: 10.1016/j.envpol.2013.10.007
    [66] CHEN X P, XU S S, TAN T F, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures[J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 3156-3168. doi: 10.3390/ijerph110303156
    [67] BRITT K L, SAUNDERS P K, McPHERSON S J, et al. Estrogen actions on follicle formation and early follicle development[J]. Biology of Reproduction, 2004, 71(5): 1712-1723. doi: 10.1095/biolreprod.104.028175
    [68] GUPTA R K, SINGH J M, LESLIE T C, et al. Di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro[J]. Toxicology and Applied Pharmacology, 2010, 242(2): 224-230. doi: 10.1016/j.taap.2009.10.011
    [69] ROCHA MONTEIRO P R, REIS-HENRIQUES M A, COIMBRA J. Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder (Platichthys flesus L. )[J]. Aquatic Toxicology, 2000, 48(4): 549-559. doi: 10.1016/S0166-445X(99)00055-7
    [70] ARUKWE A, GOKSØYR A. Eggshell and egg yolk proteins in fish: Hepatic proteins for the next generation: Oogenetic, population, and evolutionary implications of endocrine disruption[J]. Comparative Hepatology, 2003, 2(1): 4. doi: 10.1186/1476-5926-2-4
    [71] MARIN M G, MATOZZO V. Vitellogenin induction as a biomarker of exposure to estrogenic compounds in aquatic environments[J]. Marine Pollution Bulletin, 2004, 48(9/10): 835-839.
    [72] SUMPTER J P, JOBLING S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment[J]. Environmental Health Perspectives, 1995, 103(Suppl 7): 173-178. doi: 10.1289/ehp.95103s7173
    [73] LINDEN S K, SUTTON P, KARLSSON N G, et al. Mucins in the mucosal barrier to infection[J]. Mucosal Immunology, 2008, 1(3): 183-197. doi: 10.1038/mi.2008.5
    [74] HWANG J, CHOI D, HAN S, et al. Potential toxicity of polystyrene microplastic particles[J]. Scientific Reports, 2020, 10(1): 1-12. doi: 10.1038/s41598-019-56847-4
    [75] YUAN Y, SEPÚLVEDA M S, BI B L, et al. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio)[J]. Chemosphere, 2023, 311: 137048. doi: 10.1016/j.chemosphere.2022.137048
    [76] LEGRAND T P R A, WYNNE J W, WEYRICH L S, et al. A microbial sea of possibilities: Current knowledge and prospects for an improved understanding of the fish microbiome[J]. Reviews in Aquaculture, 2020, 12(2): 1101-1134. doi: 10.1111/raq.12375
    [77] MIAO S Y, ZHAO C Z, ZHU J Y, et al. Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead[J]. Scientific Reports, 2018, 8(1): 1-10.
    [78] RAMOS M A, BATISTA S, PIRES M A, et al. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia[J]. Animal, 2017, 11(8): 1259-1269. doi: 10.1017/S1751731116002792
    [79] XU K H, ZHANG Y D, HUANG Y M, et al. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio)[J]. Science of the Total Environment, 2021, 757: 143730. doi: 10.1016/j.scitotenv.2020.143730
    [80] SOLOMANDO A, CAPÓ X, ALOMAR C, et al. Long-term exposure to microplastics induces oxidative stress and a pro-inflammatory response in the gut of Sparus aurata Linnaeus, 1758[J]. Environmental Pollution, 2020, 266: 115295. doi: 10.1016/j.envpol.2020.115295
    [81] TRESTRAIL C, NUGEGODA D, SHIMETA J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system[J]. Science of the Total Environment, 2020, 734: 138559. doi: 10.1016/j.scitotenv.2020.138559
    [82] KAMINSKYY V O, ZHIVOTOVSKY B. Free radicals in cross talk between autophagy and apoptosis[J]. Antioxidants & Redox Signaling, 2014, 21(1): 86-102.
    [83] REDZA-DUTORDOIR M, AVERILL-BATES D A. Activation of apoptosis signalling pathways by reactive oxygen species[J]. Biochimica et Biophysica Acta, 2016, 1863(12): 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012
    [84] BHABRA G, SOOD A, FISHER B, et al. Nanoparticles can cause DNA damage across a cellular barrier[J]. Nature Nanotechnology, 2009, 4(12): 876-883. doi: 10.1038/nnano.2009.313
    [85] MAHMOUDI M, AZADMANESH K, SHOKRGOZAR M A, et al. Effect of nanoparticles on the cell life cycle[J]. Chemical Reviews, 2011, 111(5): 3407-3432. doi: 10.1021/cr1003166
    [86] ZHANG J F, SHEN H, WANG X R, et al. Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus[J]. Chemosphere, 2004, 55(2): 167-174. doi: 10.1016/j.chemosphere.2003.10.048
    [87] NIU Z G, XU W A, NA J, et al. How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: A probable positive factor for red tides[J]. Environmental Pollution, 2019, 255: 113149. doi: 10.1016/j.envpol.2019.113149
    [88] BHAGAT J, INGOLE B S, SINGH N. Glutathione s-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: A review[J]. Invertebrate Survival Journal, 2016, 13: 336-349.
    [89] KIM J H, KANG Y J, KIM K I, et al. Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus[J]. Environmental Toxicology and Pharmacology, 2019, 67: 73-78. doi: 10.1016/j.etap.2019.02.001
    [90] KIM J H, KANG J C. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations[J]. Chemosphere, 2015, 135: 46-52. doi: 10.1016/j.chemosphere.2015.03.062
    [91] CHAUDIÈRE J, FERRARI-ILIOU R. Intracellular antioxidants: From chemical to biochemical mechanisms[J]. Food and Chemical Toxicology, 1999, 37(9/10): 949-962.
    [92] UMAMAHESWARI S, PRIYADARSHINEE S, BHATTACHARJEE M, et al. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio)[J]. Chemosphere, 2021, 281: 128592. doi: 10.1016/j.chemosphere.2020.128592
    [93] CHOI J S, JUNG Y J, HONG N H, et al. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus)[J]. Marine Pollution Bulletin, 2018, 129(1): 231-240. doi: 10.1016/j.marpolbul.2018.02.039
    [94] LU K, QIAO R X, AN H, et al. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)[J]. Chemosphere, 2018, 202: 514-520. doi: 10.1016/j.chemosphere.2018.03.145
    [95] FRÖHLICH E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles[J]. Current Drug Metabolism, 2013, 14(9): 976-988. doi: 10.2174/1389200211314090004
    [96] UMAMAHESWARI S, PRIYADARSHINEE S, KADIRVELU K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish[J]. Chemico-Biological Interactions, 2021, 345: 109550. doi: 10.1016/j.cbi.2021.109550
    [97] ITO F, SONO Y, ITO T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation[J]. Antioxidants (Basel, Switzerland), 2019, 8(3): 72.
    [98] BARBOZA L G A, LOPES C, OLIVEIRA P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure[J]. The Science of the Total Environment, 2020, 717: 134625. doi: 10.1016/j.scitotenv.2019.134625
    [99] ALOMAR C, SUREDA A, CAPÓ X, et al. Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress[J]. Environmental Research, 2017, 159: 135-142. doi: 10.1016/j.envres.2017.07.043
    [100] PEI X, HENG X, CHU W H. Polystyrene nano/microplastics induce microbiota dysbiosis, oxidative damage, and innate immune disruption in zebrafish[J]. Microbial Pathogenesis, 2022, 163: 105387. doi: 10.1016/j.micpath.2021.105387
    [101] LU L, WAN Z Q, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631/632: 449-458. doi: 10.1016/j.scitotenv.2018.03.051
    [102] HIRT N, BODY-MALAPEL M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature[J]. Particle and Fibre Toxicology, 2020, 17(1): 57. doi: 10.1186/s12989-020-00387-7
    [103] ZHANG Y A, SALINAS I, ORIOL SUNYER J. Recent findings on the structure and function of teleost IgT[J]. Fish & Shellfish Immunology, 2011, 31(5): 627-634.
    [104] PETERSEN C, BELL R, KA K, et al. T cell–mediated regulation of the microbiota protects against obesity[J]. Science, 2019, 365(6451): 9351. doi: 10.1126/science.aat9351
    [105] PABST O, SLACK E. IgA and the intestinal microbiota: The importance of being specific[J]. Mucosal Immunology, 2020, 13(1): 12-21. doi: 10.1038/s41385-019-0227-4
    [106] XU Z, TAKIZAWA F, CASADEI E, et al. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution[J]. Science Immunology, 2020, 5(44): 3254. doi: 10.1126/sciimmunol.aay3254
    [107] SAURABH S, SAHOO P K. Lysozyme: An important defence molecule of fish innate immune system[J]. Aquaculture Research, 2008, 39(3): 223-239. doi: 10.1111/j.1365-2109.2007.01883.x
    [108] ZHANG L J, MAMILLAPALLI R, HABATA S, et al. Myometrial-derived CXCL12 promotes lipopolysaccharide induced preterm labour by regulating macrophage migration, polarization and function in mice[J]. Journal of Cellular and Molecular Medicine, 2022, 26(9): 2566-2578. doi: 10.1111/jcmm.17252
    [109] LEE A J, KANDIAH N, KARIMI K, et al. Interleukin-15 is required for maximal lipopolysaccharide-induced abortion[J]. Journal of Leukocyte Biology, 2013, 93(6): 905-912. doi: 10.1189/jlb.0912442
    [110] BARSIG J, KÜSTERS S, VOGT K, et al. Lipopolysaccharide-induced interleukin-10 in mice: Role of endogenous tumor necrosis factor-alpha[J]. European Journal of Immunology, 1995, 25(10): 2888-2893. doi: 10.1002/eji.1830251027
    [111] BARAN A, KÖKTÜRK M, ATAMANALP M, et al. Determination of developmental toxicity of zebrafish exposed to propyl gallate dosed lower than ADI (Acceptable Daily Intake)[J]. Regulatory Toxicology and Pharmacology, 2018, 94: 16-21. doi: 10.1016/j.yrtph.2017.12.027
    [112] ÇOMAKLI S, KÖKTÜRK M, TOPAL A, et al. Immunofluorescence/fluorescence assessment of brain-derived neurotrophic factor, c-Fos activation, and apoptosis in the brain of zebrafish (Danio rerio) larvae exposed to glufosinate[J]. NeuroToxicology, 2018, 69: 60-67. doi: 10.1016/j.neuro.2018.09.003
    [113] ZHAI X W, WANG L, XU C, et al. Triptolide preserves glomerular barrier function via the inhibition of p53-mediated increase of GADD45B[J]. Archives of Biochemistry and Biophysics, 2019, 671: 210-217. doi: 10.1016/j.abb.2019.07.012
    [114] PARK S, LEE J Y, PARK H, et al. Bifenthrin induces developmental immunotoxicity and vascular malformation during zebrafish embryogenesis[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2020, 228: 108671.
    [115] SARMAH S, MARRS J A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function[J]. International Journal of Molecular Sciences, 2016, 17(12): 2123. doi: 10.3390/ijms17122123
    [116] HUMAYUN A, JR FORNACE A J. GADD45 in stress signaling, cell cycle control, and apoptosis[J]. Advances in Experimental , 2022, 1360: 1-22.
  • 加载中
表( 1)
计量
  • 文章访问数:  2081
  • HTML全文浏览数:  2081
  • PDF下载数:  70
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-19
  • 录用日期:  2023-04-03
  • 刊出日期:  2024-06-27

微塑料对斑马鱼的毒性效应及机制研究进展

    通讯作者: E-mail:huguocheng@scies.org
  • 1. 锦州医科大学研究生培养基地(生态环境部华南环境科学研究所),广州,510535
  • 2. 生态环境部华南环境科学研究所,国家环境保护环境污染健康风险评价重点实验室,广州,510535
  • 3. 上海大学环境与化学工程学院,上海,200444
基金项目:
国家重点研发计划课题(2022YFC3902102)资助.

摘要: 塑料污染已成为全球性重大环境问题,受到国际的广泛关注. 2022年,我国将微塑料(microplastics,MPs)列为四大新污染物之一. MPs是指直径小于5 mm的塑料颗粒,具有生物毒性、环境持久性、生物累积性等特征,其生产和使用与人类生活息息相关,对生态环境和人体健康存在较大风险. 在水环境中,MPs易被水生动物摄取产生毒性效应,并沿食物链富集和放大. 斑马鱼是被广泛使用的毒理学模型,具有成本低、产卵率高、易饲养等特点,与人类的基因序列有很高的同源性. 本文综述了国内外文章,阐述微塑料在斑马鱼体内的富集情况,归纳了微塑料对斑马鱼的生物毒性效应,总结了微塑料对斑马鱼的毒性作用机制,并从三个方面展望了未来的研究方向,为进一步开展微塑料的生物毒性效应、机制研究以及生态风险提供理论支撑和参考.

English Abstract

  • 塑料被广泛应用于工业、建筑、医疗和农业生产等领域,根据组分的不同,塑料可分为聚氯乙烯(polyvinyl chloride,PVC)、聚丙烯(polypropylene,PP)、聚苯乙烯(polystyrene,PS)、聚酯纤维(polyester,PET)、聚酰胺(polyamide,PA)或聚乙烯(polyethylene,PE)等. 2020年,塑料在全世界总产量约为3.6亿吨(1950年仅为150万吨),并以每年3%的速度增长[1]. 全球每年有超过8万吨的塑料垃圾漂浮至海洋[2]. 这些塑料在环境中被物理、化学和生物作用降解成更小的塑料微粒或纤维,称为微塑料. 微塑料已经成为一类普遍的水环境污染物,分布广泛,不仅能存在淡水湖和海洋等人类活动频繁的地区,甚至是被科研人员称为地球上“最干净”的地方——南极洲[3]、以及青藏高原也有所检出[45].

    目前,国内广泛关注的新污染物有4大类,MPs便是其中之一. MPs通常被界定为平均粒径小于5 mm的塑料微粒,也有不同研究表明,MPs被归类为1 μm至1000 μm[6]. MPs具有体积小、疏水性强、生物难降解等特征,易被生物体摄取并累积,危害生物体的健康甚至生态安全. MPs还可吸附其他污染物,造成更严重的毒理效应和生态危害[79]. 水环境中的微塑料可通过食物链进入到水生动物中,且具有生物富集和生物放大的作用. 研究表明,MPs可能会引起水生生物的氧化应激、免疫反应、代谢变化及细胞坏死等生物毒性效应,并可能会通过食物链富集放大,到更高营养级的生物,如海龟、水生哺乳动物和海鸟等动物[10].

    斑马鱼是环境污染物毒性测试的普遍生物模型,不同发育阶段的斑马鱼经常被用于研究MPs的健康风险. 斑马鱼幼体全身透明,可通过荧光标记的MPs进行实时成像定位研究[1112] ,便于观察各个组织中的MPs摄取情况. 鉴于利用斑马鱼研究MPs生物毒性效应的趋势日益显著,本文综述了现有文献的研究成果,阐述了微塑料在斑马鱼体内的累积效应,总结了MPs对斑马鱼的生态毒理学效应及毒性机制,包括生长发育毒性、运动神经与生殖系统代谢紊乱和肝脏变化等,并从三个方面对未来的研究方向提出建议.

    • 呼吸和摄食是斑马鱼对MPs的主要摄入途径,不同发育阶段的斑马鱼可以通过不同的方式摄取MPs. 斑马鱼对MPs的摄取能力主要受斑马鱼的发育程度和MPs粒径的影响. 粒径较大的塑料颗粒通常只能滞留于胃肠道,粒径较小的塑料颗粒更容易累积,且容易从胃肠道转运到周边其他组织[13]. 胚胎可通过表皮接触MPs,成鱼或幼鱼可通过真皮、眼黏膜和口腔接触MPs[14]. 而Zitouni等指出,无论吸收途径如何,MPs的累积主要取决于粒径大小,较小的MPs更容易累积[15]. Kim等的研究也表明,MPs的尺寸是决定其在鱼体内累积和毒性效应最大的决定性因素,而不是MPs的类型或吸收途径[16]. 斑马鱼的绒毛膜有用于氧气和营养物质运输的孔隙,较小的MPs可以在胚胎期进入这些孔隙,大于孔隙尺寸的MPs附着在绒毛膜上,随水流进入或被幼鱼误食[17]. Duan等发现,直径100 nm的MPs可以有效地被胚胎绒毛阻断,通过口摄取、皮肤摄取与血液迁移等方式进入斑马鱼幼鱼,并在胚胎孵化时分布在肝脏和脑[18].

      MPs可在斑马鱼胚胎的绒毛膜[1921],卵黄囊[22]、 肌肉纤维、 眼睛和脊髓[19,23]中累积,甚至在仔鱼和成鱼的嘴[21]、 肠道[2430]、 脑[20]、 血液[31]、 肝脏[27,29]、 心脏[31]、 鳃[11,27,29]和肌肉[25]等部位累积. MPs通常累积在斑马鱼的胃肠道中,部分会转移到循环系统和淋巴系统,甚至分布到肝脏和其他组织器官[3233]. MPs的大小决定了它们在循环系统中的运输效率,造成不同组织的累积差异. Lu等发现MPs在组织中的生物蓄积量与MPs的大小有关,直径为5 μm在组织中的MPs的生物蓄积量是直径为20 μm的2倍,且直径5 μm的MPs能在肝组织中累积,而20 μm则不能[27]. 这与Qiao等的研究结果相似,0.1 μm MPs可累积在斑马鱼肠道、肝脏、鳃,而20 μm的MPs仅累积在斑马鱼的肠道 [29]. Chen等的研究也表明,随着塑料颗粒尺寸的减小,塑料颗粒会转运到更多组织中[25,34]. MPs在组织中的累积会对斑马鱼生长发育[35]、免疫系统[36]、氧化应激[37]、血糖水平[38]、能量代谢[37] 和其他生物反应标记物[27]产生不良影响.

      MPs的粒径大小也决定能否通过斑马鱼的血脑屏障累积在脑组织,对中枢神经系统起到直接毒性作用. 斑马鱼的血脑屏障大约建立在受精后72 h[39],MPs可以进入红细胞[4041],穿透血脑屏障[42],随血流进入脑组织. MPs暴露后首先在斑马鱼的卵黄囊和头部累积,随后在心包、胆囊、胰腺、肝脏和胃肠道等其他组织中累积[20]. 目前,关于MPs对不同阶段斑马鱼的毒性研究很多,但还未有系统的总结,本文梳理了微塑料对斑马鱼的累积部位及毒性效应(表1).

    • 微塑料对斑马鱼的毒性效应表现在多个方面,主要包括生长发育毒性、神经毒性、生殖毒性、肠道毒性以及心脏毒性等.

    • 微塑料会影响斑马鱼的生长发育及繁殖,降低胚胎的孵化率或延迟孵化,从而影响斑马鱼的存活率. Malafaia等的研究证实斑马鱼胚胎暴露于MPs后胚胎孵化率降低,幼鱼存活率也降低[35]. 斑马鱼胚胎绒毛膜可以有效屏障直径为100 nm的MPs,因此大于100 nm的MPs可吸附在绒毛膜外表面,改变绒毛膜的力学性质,导致胚胎处于低氧微环境中[18]. Ong等认为胚胎延迟孵化是MPs包裹在胚胎绒毛膜上引起,进而导致孵化酶被抑制、环境低氧和胚胎自主运动减弱等[55].

      MPs对斑马鱼幼鱼具有致畸性,可引起幼鱼形态的改变. 斑马鱼幼鱼暴露于MPs可出现卵黄囊面积增加、头部高度增加,心包/卵黄囊水肿,体轴弯曲,尾部畸形,视泡面积增大[35,43]等形态改变. 斑马鱼摄取MPs后会产生饱腹感,减少营养物质的摄入,成年斑马鱼暴露于MPs(5 μm) 21 d后,发现生长缓慢[38]. 在环境中,MPs与其他污染物共同作用时,其毒性效应可能发生改变. Trevisan等的研究表明MPs和多环芳烃(phenanthrene,PAHs)共同暴露会减少斑马鱼幼体对PAHs的吸收,并减少其引起的发育畸形[12].

    • 斑马鱼被广泛用于发育神经毒理学研究,斑马鱼与人类在脑模式以及多个神经和生理系统的结构和功能方面具有广泛的同源性[56], 许多发育中的人类大脑分区在斑马鱼可以识别出对应部分[57]. 中枢神经系统的功能表现为复杂的行为和认知功能改变,斑马鱼神经运动行为的研究主要包括斑马鱼的光暗刺激实验、敲击实验、旷场实验、新型水槽实验等. 斑马鱼具有空间记忆和学习能力,对应激性刺激具有高度的敏感性,表现为焦虑行为、择偶行为、侵略行为、社会行为等[58]. Sarasamma等的研究表明斑马鱼暴露于MPs后昼夜节律活动紊乱,其运动活动、攻击性、浅滩行为和捕食者回避行为均发生明显改变[37]. MPs可导致斑马鱼脑组织产生氧化应激,神经元受损,造成行为障碍. 研究表明直径20 nm的MPs可进入斑马鱼的大脑并在生物累积的脑区产生过量的活性氧(reactive oxygen species,ROS),导致行为障碍和脑损伤[43]. 斑马鱼暴露于MPs可出现癫痫发作行为[33],运动活动量减少[20,43]以及运动能力下降[21]. MPs能够穿透斑马鱼绒毛膜并被胚胎摄取,在组织中累积,显著降低幼鱼的活动能力,产生神经毒性[20]. LeMoine等对斑马鱼的神经毒性研究表明,暴露于MPs后鱼体内与神经元功能相关的基因以及神经元分化和轴突形成基因表达下调[49].

      MPs可通过破坏斑马鱼体内的脂质过氧化和干扰神经相关酶而导致神经毒性. 斑马鱼暴露于MPs,可干扰鱼体内多种神经递质的传递,如乙酰胆碱、多巴胺、褪黑素、氨基丁酸、后叶加压素、催产素、5-羟色胺和Kispeptin等[59]. 在各种神经递质的传递作用中,乙酰胆碱酯酶(acetylcholinesterase,AChE)特别被用作神经毒性的主要指标,指示体内胆碱能神经的受损状况. 乙酰胆碱酯酶(AChE)对维持神经肌肉系统的正常功能很重要,它能导致乙酰胆碱(acetylcholine,ACh)的失活,而ACh对神经肌肉接头和脑突触的胆碱能神经信号传递至关重要. 有研究表明,MPs可抑制斑马鱼的AChE活性,对胆碱能神经传递产生不利影响,并导致潜在的神经和神经肌肉功能障碍[25,37]. 抑制AChE能显著增加大脑中的ACh水平,扰乱神经系统的功能. ACh在突触裂隙中的蓄积会对受体产生过度刺激,阻碍神经信号的传递,导致斑马鱼运动功能丧失和死亡[25].

    • 性腺的遗传完整性是生殖成功的重要条件[60]. MPs可影响鱼类精子和卵子发生过程[61],导致生殖细胞早期死亡和DNA损伤,并将受损的基因作为缺陷基因遗传给下一代[62],产生毒性. Ma等发现MPs可以通过血睾屏障在性腺组织中累积,诱导性腺组织中的生殖细胞凋亡影响生殖活动[63]. Sarasamma等将斑马鱼暴露于MPs,发现MPs可损害卵泡的生长和功能[37]. 塑料制造行业为了增加材料的可塑性和耐用性经常使用增塑剂,一些增塑剂如邻苯二甲酸酯和双酚A,具有内分泌干扰作用,影响雌激素活性[64]. MPs在迁移转化过程中会释放出有机单体和有毒添加剂,海洋生物摄入MPs后,增塑剂在肠道中被释放[65],产生雌激素内分泌干扰作用[66].

      卵黄蛋白原(vitellogenin,Vtg)在肝脏中合成分泌入血,进入发育中的卵母细胞参与卵黄囊形成,在斑马鱼的繁殖中起着重要作用[70]. Vtg可以促进MPs转移到卵母细胞,最终转移到胚胎卵黄囊[22]. MPs可干扰细胞色素P4501A1(CYP 1A1)和卵黄蛋白原相关基因(vtg 1)表达水平,影响卵子产生. CYP1A1表达下调会引起卵泡发育障碍和雌二醇(E2)合成抑制[6769]. Vtg 1对水环境中外源性雌激素或抗雌激素物质暴露具有响应性,常用作鱼类雌激素效应的生物标志物. 当雄性斑马鱼暴露在雌激素样物质中时也可以合成和分泌Vtg[7172]. Mak等对雄性斑马鱼暴露于MPs的急性毒性效应研究表明,MPs使斑马鱼肝脏中Vtg1表达显著上调,即雄性斑马鱼发生了雌化[33].

    • 肠腔表面的黏液层能分泌黏蛋白,保护肠黏膜抵御肠道菌群侵袭[73]. MPs在鱼类肠道中累积可导致黏膜上皮损伤、通透性增加、充血性炎症等组织学改变,并引起肠道微生物菌群失调和代谢紊乱[28,53]. Lei等发现,MPs暴露会导致斑马鱼的绒毛损伤和肠细胞分裂,改变肠细胞中钙离子等离子水平,导致肠道功能障碍[51]. 通过肠道被摄入的MPs进入鱼类血液,引起局部组织炎症或过敏反应[74]. MPs可以破坏肠道黏膜细胞,影响肠道黏液的生成[50]. Jin等在关于MPs诱导斑马鱼成鱼肠道菌群失调和炎症反应的研究中,发现斑马鱼暴露于MPs后,肠道黏液体积显著增加[52]. 也有一些研究结果与之相反[75]. MPs还能减少斑马鱼杯状细胞的数量,致使黏蛋白的生成降低,导致条件致病菌生长繁殖[76]. 因此,MPs对斑马鱼肠道黏液的影响有待进一步探究. 幼鱼暴露于MPs后,体内脂肪储量的减少表明其营养不足[14]. 纤维状的微塑料暴露可引起肠道形态变化,包括肠黏膜和肌层厚度减少和异常空泡化,这些通常与营养缺乏和饮食改变有关[7778].

      MPs通过摄入累积在肠道,并通过粪便排出[75],其肠道累积和充血程度与MPs的暴露浓度呈正相关. 肠道的损伤程度主要受MPs大小的影响,而不是化学成分[51]. 微塑料纤维对斑马鱼幼鱼和成鱼的肠道损伤具有浓度和长度依赖性,可产生氧化应激、炎症和脂质耗竭等反应. 与短的微塑料纤维相比,长的微塑料纤维可以显著减少斑马鱼的摄食量. 纤维越长,浓度越高,造成的肠壁细胞液泡化和物理损伤越严重[14]. MPs的形状也影响斑马鱼肠道的组织学损伤程度,微塑料纤维导致的肠道毒性比微塑料碎片和微珠更严重[28].

    • MPs可在斑马鱼心包内高度累积,导致心率改变,引起心脏毒性. MPs通过扩散或黏附作用进入细胞内,直接接触细胞内的蛋白质、细胞器和DNA[41],可通过与心脏肌节相互作用或氧化应激机制影响心率[20]. Duan等发现斑马鱼胚胎暴露于MPs 24 hpf后,心率显著加快,可能由于聚苯乙烯微塑料颗粒附着在胚胎绒毛膜上导致胚胎内部的缺氧微环境[18]. Pitt等发现暴露于MPs的斑马鱼幼鱼心率显著降低,浓度为0.1、1、10 mg·L−1的MPs暴露组心率分别下降5%、8%和10%,呈剂量依赖关系[20]. 研究表明心动过缓可能由于聚苯乙烯微塑料颗粒进入心肌细胞与肌节相互作用导致心功能改变[41].

    • 微塑料可诱导斑马鱼肠道炎症、肠道菌群失调、氧化应激以及代谢紊乱[53]. 微塑料和其他有机污染物的共同暴露会导致斑马鱼对有机污染物的积累增多,导致更严重的氧化损伤,从而刺激免疫功能,改变肠道微生物组成,对斑马鱼的健康造成危害. 研究表明微塑料和部分有机污染物之间具有协同毒性作用[79].

    • MPs暴露后在鱼类的组织中累积,通过物理和化学作用引起氧化应激,例如肠梗阻和内分泌紊乱[80]. MPs对鱼类细胞的毒性主要是由氧化应激引起的,包括氧化还原平衡紊乱、细胞器的受损和过多ROS的产生[81]. 当抗氧化防御系统紊乱时,过量的ROS参与多种细胞信号通路的激活,引起其他病理生理反应,如细胞自噬、DNA氧化损伤、细胞凋亡[8283]和炎症反应[8485]等. ROS可导致线粒体DNA突变,抑制线粒体氧化磷酸化,致使与能量代谢相关的ATP水平显著下降. Trevisan等通过研究MPs暴露后斑马鱼线粒体的能量产生过程,发现斑马鱼胚胎或仔鱼ATP/ADP比值减小,即NADH产生增加(可能由于微塑料引起线粒体功能障碍减缓了电子传递链对NADH的消耗并随时间累积或机体的代偿机制),ATP合成减少即机体能量产生减少,进而影响生长发育[12].

      MPs通过影响斑马鱼体内的抗氧化应激酶的活性,破坏ROS产生和抗氧化损伤之间的抗氧化平衡,导致氧化损伤. 轻微的氧化应激会诱导抗氧化酶的活性[86]. 然而当氧化应激达到一定程度时,抗氧化酶的活性将受到抑制[87]. 抗氧化应激酶通常指超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽-S-转移酶(GST)、还原型谷胱甘肽(GSH)、谷胱甘肽过氧化物酶(GPX)和谷胱甘肽还原酶(GR),这些酶是衡量生物体内氧化应激的重要生物标志物[88]. SOD是鱼类对氧化应激的主要防御机制, CAT是将过氧化氢转化为水和氧气的酶[89]. GST参与多种细胞毒性物质的解毒、细胞免受氧化损伤的防御以及脂质、血红素和类固醇等物质的运输[90]. GPX和CAT一样都是通过分解活性物质保护细胞免受过氧化的酶,GSH是小分子抗氧化剂,可作为GPX的底物,阻止自由基和ROS的过量产生成,并抑制它们与DNA、蛋白质和脂类的反应[91]. Umamaheswari等的研究表明MPs暴露会导致斑马鱼中GPX活性降低,阻止过氧化氢转化为无毒的羟基底物,导致组织中ROS的蓄积[92]. 将斑马鱼96 hpf幼鱼暴露于100 μg·L−1和1000 μg·L−1的MPs后,CAT的mRNA的表达显著上调, GPX活性升高、GR活性降低[21]. 而Parenti等将72 hpf的斑马鱼胚胎暴露于浓度为1 mg·L−1的MPs时,结果表明SOD、CAT和GPX活性无任何显著变化[46]. Lu等研究发现直径5 μm的MPs导致斑马鱼肝脏中SOD和CAT的活性显著提高,并呈剂量依赖关系[27],Wan等则表明 MPs(5—50 μm)对斑马鱼幼鱼的CAT活性有明显的抑制作用,GSH的含量显著下降[48].

      肠道损伤与肠壁细胞发生的氧化应激有关,慢性氧化应激可引起各种肠道损伤,如炎症反应和肠壁通透性改变等. 鱼类组织中ROS水平的增加会引起氧化应激,导致炎症反应和细胞死亡[93]. 研究表明MPs会增加肠道中ROS的产生, 同时SOD和IL-1α的水平会提高,诱导了明显的氧化应激和炎症反应[14]. Lu等的研究发现微塑料和镉(Cd)的共同暴露会增加斑马鱼的氧化应激和炎症反应[94].

    • 斑马鱼暴露于MPs后,会引起血糖、胆固醇和总蛋白水平的变化,导致斑马鱼的血糖、脂肪代谢和氨基酸代谢功能紊乱[49,53]. MPs可以与质膜、溶酶体、细胞骨架(肌动蛋白)和代谢相关蛋白(细胞色素P450酶)相互作用并破坏它们[95]. 长期暴露于MPs可导致斑马鱼肝脏葡萄糖代谢受损,血糖显著升高,其糖代谢、脂肪代谢和氨基酸代谢途径相关基因的表达水平均下降[38]. Wan等发现MPs暴露会引起斑马鱼幼体糖酵解和脂肪代谢相关基因的变化[48]. Veneman等将MPs显微注射到斑马鱼卵黄囊后,发现参与脂质代谢的多个核受体表达上调[31]. Duan等发现胚胎暴露于聚苯乙烯微塑料颗粒时,不饱和脂肪酸、亚油酸和丙氨酸的生物合成途径以及天冬氨酸和谷氨酸的代谢途径发生广泛变化[18]. 有研究表明,因炎症反应和刺激,谷草转氨酶(AST)和碱性磷酸酶(ALP)由肝细胞入血,MPs导致斑马鱼AST和ALP的水平显著升高[96].

      有研究表明微塑料会造成斑马鱼多种组织学改变,如肝细胞坏死和脂肪浸润,并引起肝脏炎症反应和脂质堆积[27]. 脂质很容易被氧化,长期的氧化应激和炎症可损害脂质代谢[97]. 脂质过氧化物(LPO)升高表明发生了氧化应激和脂质损伤,暴露于MPs的斑马鱼体内ROS和LPO显著增加[92]. 这表明肠道损伤可能由MPs暴露导致的脂质过氧化引起,这与斑马鱼暴露于MPs后,氧化应激诱导LPO的产生是组织中的显著特征的结论相一致[98]. 丙二醛(MDA)被用作LPO的生物标记物,因为它是脂质氧化损害后的最终产物[99] .

      斑马鱼暴露于不同浓度的MPs会产生肠道损伤[2728,36,51],肠道损伤通常与肠道炎症和细胞因子表达水平的变化有关. 肠道炎症与肠道微生物区系失衡密切相关[53],引发肠道通透性的变化. 斑马鱼暴露于MPs后,与新陈代谢、疾病和炎症密切相关的细菌发生改变, 拟杆菌门[48,52]和变形菌门[48,5253]显著减少, 梭杆菌门[5253]和厚壁菌门[48,52]显著增加. 许多研究评估了不同类型、大小和形状的微塑料的风险,强调肠道微生物区系失调与肠道毒性之间的联系[36,50,100]. 暴露于MPs可增加斑马鱼肠道菌群的多样性,且不同浓度的MPs引起肠道菌群在门和属水平上的反应不同[75]. 斑马鱼幼体暴露于MPs (5 μm和50 μm,1000 μg·L−1,持续7 d)导致肠道微生物丰度下降,并产生属水平丰度的显著变化[48]. 另一项研究分析了低剂量MPs微球(5 μm、50 μg·L−1和500 μg·L−1,持续21 d) 对斑马鱼肠道菌群的影响;结果显示菌群多样性减少,梭菌丰度增加,变形杆菌丰度降低[53]. 也有研究评估了MPs纤维对斑马鱼肠道菌群的影响,暴露在10 μg·L−1的微塑料纤维(20—100 μm)中21 d,导致斑马鱼细菌多样性减少和某些菌群的变化(变形杆菌增多,放线杆菌减少)[28]. 肠道菌群的失调会破坏肠黏膜屏障功能和免疫稳态之间的平衡,引发炎症反应[53,101].

    • MPs能跨越生物屏障进入循环系统,导致机械破坏和能量储备减少,从而影响免疫系统[59]. 被鱼类摄入的MPs可能与肠道组织相互作用并转移到循环系统,导致免疫反应的调节受损[102]. 研究表明,MPs可以影响斑马鱼的先天免疫系统和获得性免疫系统功能. PEI 等证实了MPs可以改变斑马鱼肠道微生物区系的丰富度和多样性,引起强烈的氧化应激,破环先天性免疫系统[100]. 补体系统是先天性免疫系统的一部分,可攻击病原体的细胞膜以清除病原体,MPs通过激活补体系统引起免疫反应. 经MPs暴露的斑马鱼幼体,与免疫反应相关的信号通路被激活,补体替代途径基因(如CFHL3CFHL4CFbC9)表达上调[31]. 在MPs暴露后斑马鱼产生的免疫反应多种多样,如溶菌酶、中性粒细胞、过氧化物酶、吞噬作用和免疫球蛋白等. Gu等发现斑马鱼暴露于MPs后,吞噬、趋化和整合素介导的信号通路的功能改变,细胞色素B-245β链(Cybb)、组织蛋白酶S(Ctss)、整合素亚单位β2(ITGB2)表达下调,主要组织相容性复合体(MHC)表达上调[50].

      鱼类中的免疫球蛋白IGZ/IGT的功能类似于哺乳动物中的IgA,可以快速有效地消除特定的病原体,在黏膜免疫中发挥着重要作用[103]. 黏膜免疫球蛋白(哺乳动物的IgA;硬骨鱼的IGZ或IGT)的产生是由食物抗原和肠道微生物区系引起的,有助于建立和维持与微生物区系的有益互动[104105]. 由于水环境的原因,大量的微生物不断刺激鱼类的黏膜屏障. 免疫球蛋白在硬骨鱼(IGT)和哺乳动物(主要是IgA)之间进化保守性高,维持共生微生物群落以抵御病原体[106]. 斑马鱼暴露在浓度为500 μg·L−1的MPs后,影响肠道免疫网络产生IgZ,这可能产生促炎细胞因子,吞噬微生物区系,并启动免疫反应[50]. 溶菌酶是一种由白细胞释放的具有抗生素特性的酶,是先天免疫系统的重要防御分子,可介导阻止微生物的入侵,并且经常被用作非特异性免疫功能的指标[107]. Limonta将斑马鱼暴露于MPs(PS和PE)后,观察到斑马鱼的免疫反应显著增强,溶菌酶和中性粒细胞含量增加[36].

      斑马鱼的免疫系统有许多细胞因子,维持其体内的稳定环境,是免疫系统的重要组成部分. 微塑料可以特异性改变巨噬细胞溶酶体和细胞表面受体信号转导过程[50],影响相关细胞因子的基因表达. MPs是潜在的免疫刺激剂,以粒径大小依赖和浓度依赖的方式诱导细胞因子和趋化因子的产生. 研究表明,暴露于1000 μg·L−1直径0.5 μm聚苯乙烯的斑马鱼,肠道中与先天性免疫系统相关的细胞因子(IL-1A、IL-1B和IFN)的mRNA水平和蛋白质含量显著增加,产生炎症反应[52]. 在正常情况下,肠道微生物区系和宿主免疫系统之间保持着良好的平衡关系. 当肠道微生物区系失衡时,内毒素可诱导IL-10、IL-15、CXCL12或CXCR4等炎性因子表达增加,这些炎性因子可抑制革兰氏阴性杆菌的生长和扩散[108110]. 暴露于MPs后,斑马鱼体内编码IL-1B的基因表达上调,不同组织(肝脏和肠道)的炎症反应增加[21,2728,51,53]. 暴露于高密度PE和PS颗粒会降低免疫基因白三烯B4受体(ltb4r)和干扰素诱导的跨膜蛋白(ifitm1)的肝脏转录水平[36]. 环氧合酶(COX) 参与前列腺素的合成,与炎症反应密切相关. 将斑马鱼胚胎暴露于MPs后,COX活性显著降低[46].

    • 微塑料通过影响斑马鱼体内ROS代谢,引起细胞凋亡,进而导致胚胎或幼鱼畸形的增加[111112]. MPs累积在斑马鱼幼体大脑区域,存在ROS诱导的DNA氧化损伤和细胞凋亡[43]. MPs诱导斑马鱼产生剂量和时间依赖的ROS介导的细胞凋亡反应,P53Gadd45bacasp3b基因表达上调[100]. P53基因通过Casp3bGadd45ba的激活[113114]以及ptgs2a的表达(斑马鱼中的一种炎性生物标志物)传递信号来刺激细胞凋亡. P53基因激活与细胞凋亡相关的分子(如Bcl2/Bax或细胞色素c)触发caspase信号通路[115],诱导细胞凋亡. Gadd45ba基因与对任何化学或环境应激源的应激反应有关,可引起DNA损伤、细胞凋亡、甚至生长停滞[116].

    • 塑料污染问题日益突出,近几年关于微塑料的研究爆炸性地增加,主要集中在环境迁移转化及生态毒理效应. 在生态毒理方面的研究较多集中在工业微塑料标准品对生物的毒性影响,仅有少数研究探究了环境微塑料对鱼类的毒性效应. 环境微塑料相比工业微塑料制品对生物体的毒性影响更为复杂,微塑料的粒径大小、浓度、表面老化程度及添加剂的浸出都是影响生物毒性的重要因素. 此外,水生态系统中存在多种环境污染物,微塑料可以吸附持久性有机污染物、重金属以及微生物,引起生物富集和生物放大,对生物体本身及生态环境存在较大的危害性风险. 目前,微塑料吸附污染物的研究大多数集中在重金属上,且关于微塑料与POPs的吸附解析与复合毒性效应研究较为单一,主要在抗生素及阻燃剂等方面有所涉及,有待进一步探索;塑料添加剂的浸出及生态毒性研究也较为匮乏,因此今后应在以下三个方面有所侧重:(1)环境微塑料及添加剂浸出的生态毒理效应及作用机制;(2)模拟环境老化过程,探讨环境老化及老化过程中添加剂的浸出及其相关毒性机制;(3)微塑料与POPs的复合毒性及作用机制.

    参考文献 (116)

目录

/

返回文章
返回