-
随着现代工业化和城镇化进程的加快,人类高强度的活动导致重金属被排放到环境中,造成了严峻的大气、土壤和水环境重金属污染问题[1-2]. 环境中的重金属污染具有蓄积性、持久性和不可逆性,其不仅会改变环境的组成和功能,还会影响农作物的生长,造成农产品的产量和品质的下降,甚至可能影响人体健康,因而越来越受到人们的重视[3]. 重金属污染已成为我国乃至全球重点关注的污染之一[4]. 其中,重金属铅和类金属砷均是毒性较大的重金属污染物[5-6]. 基于对铅和砷的生物学效应和人体健康损害的认识,美国环境保护署(USEPA)已将铅和砷列为毒性效应最强的重金属[7],同时国际癌症研究机构(IARC)也将砷列为I类人类致癌物,铅列为很可能的人类致癌物质(2A类)[8].
为了保护生态环境和人群健康,依据重金属的单一毒性效应,世界各国或组织颁布了不同介质中重金属的浓度限量值[9]. 然而很多研究表明,低于浓度限量值的重金属混合物仍会对生物体产生毒性效应,造成一定的损伤[10]. 重金属的复合污染已成为环境科学研究的热点之一. 砷和铅很容易受到人类活动的影响,共存于环境中,造成复合污染[11-12]. 共存的砷和铅很可能会发生相互作用,从而影响各自在动植物中的生物可利用性及其毒性效应[13]. 然而,目前针对砷和铅的复合毒性效应研究较少,已有的研究主要集中于砷或者铅单一毒性或者与其他污染物的复合毒性,而且铅对砷的毒性效应的影响研究缺乏[14-15]. 为此,本研究拟研究铅对砷毒性效应的影响,探讨砷和铅的复合毒性效应.
此外,毒代动力学过程可以反映重金属从生物体外到生物体内的浓度,决定了重金属在生物体内的残留量,关系到该重金属对生物体的毒性效应. 毒代动力学已被广泛应用于重金属毒性效应的研究. Gao等[16]采用毒代动力学方法阐释预暴露对重金属毒性效应的影响并将毒代动力学用于斑马鱼幼鱼和成鱼毒性敏感性差异的研究[17]. Huang等[18]也采用毒代动力学方法阐释了野生蚯蚓对镉具有更强耐受力的原因. 此外,暴露环境的物理(如温度)和化学(如盐度、pH)因素对重金属毒性效应的改变也与毒代动力学过程的变化密切相关[19]. 而环境中共存的重金属之间也可能会发生相互作用,改变生物体对重金属的吸收、转化、代谢和积累等毒代动力学过程,导致毒性效应的变化[20]. 因此,毒代动力学分析可成为重金属复合毒性效应形成机制研究的有力工具之一[21]. 据此,本研究将结合毒代动力学过程阐释铅对砷毒性效应影响形成的可能原因.
本研究将开展砷和铅对斑马鱼的复合毒性效应研究,重点关注铅对砷的斑马鱼毒性效应的影响,探讨砷和铅对斑马鱼的复合毒性效应,并利用毒代动力学过程分析方法阐释铅对砷的毒性效应影响的可能原因.
铅对砷的毒性效应及毒代动力学过程的影响
The influence of lead on toxic effect of arsenic and its toxicokinetic process
-
摘要: 为探究铅对砷的毒性效应的影响及其原因,本研究选用斑马鱼作为模式生物开展了毒理实验,以评价砷和铅的复合毒性效应,分析斑马鱼体内重金属残留量,并采用一级一室动力学模型模拟了砷的毒代动力学过程. 毒理实验结果表明,铅对斑马鱼未产生明显致死效应,砷对斑马鱼的致死效应随暴露时间增长显著增强,而铅的共存能够显著降低砷对斑马鱼的致死性,砷和铅对斑马鱼的致死性呈现出拮抗效应. 毒代动力学结果表明,铅的存在显著加快了斑马鱼对砷的消除速率并减弱了吸收速率,可降低斑马鱼对砷的富集能力,从而削弱了砷对斑马鱼的毒性效应. 本研究揭示了砷和铅对斑马鱼的拮抗效应并从污染物毒代动力学的角度解释了复合毒性形成原因,充实了重金属的复合毒性效应基础数据,可提高重金属风险评估的准确性.Abstract: To explore the influence of lead on arsenic toxicity and its formation mechanism, zebrafish was selected as model organism to conduct toxicology test in this study. Joint toxicity of arsenic and lead was evaluated. Body residue of metals in zebrafish was analyzed and toxicokinetic process of arsenic was simulated by first order one compartment toxicokinetic model. The toxicology test results indicated lead did not generate lethal effect for zebrafish, but lethal effect caused by arsenic increased significantly with the increase of exposure time. However, the coexistence of lead can significantly reduce the lethality of arsenic to zebrafish. Arsenic and lead showed antagonistic effects on zebrafish lethality. The toxicokinetic results showed the presence of lead significantly accelerated the elimination rate and reduced the uptake rate of arsenic in zebrafish. Thus, the bioconcentration ability of arsenic in zebrafish was weakened and the toxic effect of arsenic on zebrafish was mitigated. This study revealed the antagonistic effect of arsenic and lead on zebrafish and explained the mechanism of joint toxicity from the perspective of toxicokinetic. It provides basic data of joint toxicity for metals and improved the accuracy of risk assessment of metals.
-
Key words:
- arsenic /
- lead /
- toxic effect /
- toxicokinetic /
- zebrafish.
-
表 1 砷单独暴露以及砷和铅共同暴露时斑马鱼体内砷的毒代动力学参数(n=3)
Table 1. Toxicokinetic parameters of arsenic in zebrafish in arsenic-only exposure and arsenic and lead co-exposure (n=3)
毒代动力学参数
Toxicokinetic parameter砷单独暴露
Arsenic-only exposure砷和铅共同暴露
Arsenic and lead co-exposureku/(L·kg−1·d−1) 0.0825±0.0170 0.0560±0.0089 ke/d−1 0.645±0.153 0.729±0.131 t1/2/d 8.4 12.4 BCF/(L·kg−1) 0.128 0.0768 R2 0.66 0.77 -
[1] 余涛, 蒋天宇, 刘旭, 等. 土壤重金属污染现状及检测分析技术研究进展 [J]. 中国地质, 2021, 48(2): 460-476. YU T, JIANG T Y, LIU X, et al. Research progress in current status of soil heavy metal pollution and analysis technology [J]. Geology in China, 2021, 48(2): 460-476(in Chinese).
[2] WU Y F, LI X, YU L, et al. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives [J]. Resources, Conservation and Recycling, 2022, 181: 106261. doi: 10.1016/j.resconrec.2022.106261 [3] 黎森, 王敦球, 于焕云. 铅-砷交互作用影响小白菜生长及铅砷积累的效应研究 [J]. 生态环境学报, 2019, 28(1): 170-180. LI S, WANG D Q, YU H Y. Effect of Pb and As interaction on the growth and As and Pb accumulation of Brassica campestris L. [J]. Ecology and Environmental Sciences, 2019, 28(1): 170-180(in Chinese).
[4] QIN Y H, TAO Y Q. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment [J]. Ecotoxicology and Environmental Safety, 2022, 248: 114293. doi: 10.1016/j.ecoenv.2022.114293 [5] FATOKI J O, BADMUS J A. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation [J]. Journal of Hazardous Materials Advances, 2022, 5: 100052. doi: 10.1016/j.hazadv.2022.100052 [6] FLORA G, GUPTA D, TIWARI A. Toxicity of lead: A review with recent updates [J]. Interdisciplinary Toxicology, 2012, 5(2): 47-58. doi: 10.2478/v10102-012-0009-2 [7] JONES E A, WRIGHT J M, RICE G, et al. Metal exposures in an inner-city neonatal population [J]. Environment International, 2010, 36(7): 649-654. doi: 10.1016/j.envint.2010.04.007 [8] World Health Organization. Agents Classified by the IARC Monographs, Volumes 1–132[EB/OL]. [2022-09-23]. [9] 汤亚云, 管凡荀, 高鹏飞, 等. 不同国家或组织动物源性食品中重金属限量标准的比较研究 [J]. 黑龙江畜牧兽医, 2022(14): 8-13+21. doi: 10.13881/j.cnki.hljxmsy.2021.04.0346 TANG Y Y, GUAN F X, GAO P F, et al. Comparative study on heavy metal limit standards of animal derived food in different countries or organizations [J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(14): 8-13+21(in Chinese). doi: 10.13881/j.cnki.hljxmsy.2021.04.0346
[10] FOWLER B A, WHITTAKER M H, LIPSKY M, et al. Oxidative stress induced by lead, cadmium and arsenic mixtures: 30-day, 90-day, and 180-day drinking water studies in rats: An overview [J]. Biometals, 2004, 17(5): 567-568. doi: 10.1023/B:BIOM.0000045740.52182.9d [11] 钱学诗, 李勇, 钱壮壮, 等. 北亚热带东部次生阔叶林降水过程中的镉、铅、砷含量变化 [J]. 生态环境学报, 2022, 31(5): 979-989. QIAN X S, LI Y, QIAN Z Z, et al. Changes of cadmium, lead and arsenic contents during precipitation in the secondary broad-leaved forest in the eastern area of north subtropics, China [J]. Ecology and Environmental Sciences, 2022, 31(5): 979-989(in Chinese).
[12] 曲良, 谭海涛, 刘涛, 等. 北部湾铁山港附近海域水体和沉积物重金属分布特征及生态风险评价 [J]. 环境化学, 2023, 42(3): 757-768. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2022102606 QU L, TAN H T, LIU T, et al. Distribution characteristics and potential ecological risk of heavy metals in the seawater and sediment of Tieshan Port, Beibu Gulf [J]. Environmental Chemistry, 2023, 42(3): 757-768(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2022102606
[13] 杨小俊, 次仁德吉, 吴雪莲, 等. 铅—砷交互作用对青稞苗期生长及铅砷吸收积累的影响 [J]. 西南农业学报, 2022, 35(9): 2189-2196. YANG X J, CIRENDEJI, WU X L, et al. Effect of Pb-As interaction on highland barley growth and Pb-As uptake and accumulation at seedling stage [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2189-2196(in Chinese).
[14] CUI D, ZHANG P, LI H P, et al. The dynamic changes of arsenic biotransformation and bioaccumulation in muscle of freshwater food fish crucian carp during chronic dietborne exposure [J]. Journal of Environmental Sciences, 2021, 100: 74-81. doi: 10.1016/j.jes.2020.07.005 [15] LIU X S, WANG J M, HUANG Y W. Quantifying the effect of nano-TiO2 on the toxicity of lead on C. dubia using a two-compartment modeling approach [J]. Chemosphere, 2021, 263: 127958. doi: 10.1016/j.chemosphere.2020.127958 [16] GAO Y F, XIE Z C, ZHU J X, et al. Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: A toxicokinetics–toxicodynamics approach [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111788. doi: 10.1016/j.ecoenv.2020.111788 [17] GAO Y F, ZHANG Y, FENG J F, et al. Toxicokinetic−toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish [J]. Environmental Pollution, 2019, 251: 221-229. doi: 10.1016/j.envpol.2019.05.003 [18] HUANG C D, GE Y, SHEN Z Q, et al. Reveal the metal handling and resistance of earthworm Metaphire californica with different exposure history through toxicokinetic modeling [J]. Environmental Pollution, 2021, 289: 117954. doi: 10.1016/j.envpol.2021.117954 [19] WANG W X, TAN Q G. Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms [J]. Environmental Pollution, 2019, 252: 1561-1573. doi: 10.1016/j.envpol.2019.06.043 [20] OLLSON C J, SMITH E, HERDE P, et al. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead [J]. Chemosphere, 2017, 168: 658-666. doi: 10.1016/j.chemosphere.2016.11.010 [21] 冯剑丰, 高永飞, 朱景雪, 等. 毒代-毒效动力学模型及其在金属水生态风险评估中的应用研究进展 [J]. 环境工程, 2019, 37(11): 10-18,124. FENG J F, GAO Y F, ZHU J X, et al. Application of toxicokinetic-toxicodynamic models in aquatic ecological risk assessment for metals [J]. Environmental Engineering, 2019, 37(11): 10-18,124(in Chinese).
[22] 甘露菁, 荣菡, 杨丹, 等. 斑马鱼对铜、铅和镍的生物富集动力学研究 [J]. 中国食物与营养, 2019, 25(11): 25-29. GAN L J, RONG H, YANG D, et al. Bioaccumulation kinetics of Brachydanio rerio on copper, lead and nickel [J]. Food and Nutrition in China, 2019, 25(11): 25-29(in Chinese).
[23] 李欢, 张静丽, 张诗雨, 等. 四环素和砷对斑马鱼的联合毒性及机制 [J]. 中国环境科学, 2021, 41(7): 3371-3380. LI H, ZHANG J L, ZHANG S Y, et al. Combined toxicity and underlying mechanism of tetracycline and arsenic on zebrafish [J]. China Environmental Science, 2021, 41(7): 3371-3380(in Chinese).
[24] ADOLFSSON-ERICI M, ÅKERMAN G, JAHNKE A, et al. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests [J]. Chemosphere, 2012, 86(6): 593-599. doi: 10.1016/j.chemosphere.2011.10.024 [25] OECD. Test No. 417: Toxicokinetics, OECD Guidelines for the Testing of Chemicals, Section 4[M]. Paris: OECD Publishing, 2010. [26] CHEN X, LI H Z, ZHANG J J, et al. Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression [J]. Environmental Pollution, 2016, 218: 1005-1013. doi: 10.1016/j.envpol.2016.08.051 [27] 祁红学, 李慧珍, 游静. 被动加标在水生生态风险评价中的应用——以多氯联苯分配系数的测定为例 [J]. 生态毒理学报, 2015, 10(2): 45-55. QI H X, LI H Z, YOU J. Application of passive dosing in aquatic ecological risk assessment: A case study of measuring partition coefficients of polychlorinated biphenyls [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 45-55(in Chinese).
[28] LI H Z, YOU J, WANG W X. Multi-compartmental toxicokinetic modeling of fipronil in tilapia: Accumulation, biotransformation and elimination [J]. Journal of Hazardous Materials, 2018, 360: 420-427. doi: 10.1016/j.jhazmat.2018.07.085 [29] CHEN L Z, SONG D D, ZHANG W, et al. The dynamic changes of arsenic bioaccumulation and antioxidant responses in the marine medaka Oryzias melastigma during chronic exposure [J]. Aquatic Toxicology, 2019, 212: 110-119. doi: 10.1016/j.aquatox.2019.05.001 [30] GAO Y F, KANG L L, ZHANG Y, et al. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish [J]. Chemosphere, 2019, 220: 774-782. doi: 10.1016/j.chemosphere.2018.12.197 [31] ZHANG Y, FENG J F, GAO Y F, et al. Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity [J]. Environmental Pollution, 2019, 249: 959-968. doi: 10.1016/j.envpol.2019.03.115 [32] LIU F J, GENTLES A, THEODORAKIS C W. Arsenate and perchlorate toxicity, growth effects, and thyroid histopathology in hypothyroid zebrafish Danio rerio [J]. Chemosphere, 2008, 71(7): 1369-1376. doi: 10.1016/j.chemosphere.2007.11.036 [33] SARKAR S, MUKHERJEE S, CHATTOPADHYAY A, et al. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes [J]. Ecotoxicology and Environmental Safety, 2014, 107: 1-8. doi: 10.1016/j.ecoenv.2014.05.012 [34] BYEON E, KANG H M, YOON C, et al. Toxicity mechanisms of arsenic compounds in aquatic organisms [J]. Aquatic Toxicology, 2021, 237: 105901. doi: 10.1016/j.aquatox.2021.105901 [35] 李梓萌, 李肖乾, 张文慧, 等. 重金属复合污染对生物影响的研究进展 [J]. 环境化学, 2021, 40(11): 3331-3343. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021033107 LI Z M, LI X Q, ZHANG W H, et al. Research progress on the effects of heavy metal compound pollution on organisms [J]. Environmental Chemistry, 2021, 40(11): 3331-3343(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021033107
[36] MUTHUSAMY S, PENG C, NG J C. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells [J]. Chemosphere, 2016, 165: 41-51. doi: 10.1016/j.chemosphere.2016.08.137 [37] 邢胜男. 斑马鱼胚胎发育毒性试验评价重金属联合生物毒性[D]. 上海: 上海师范大学, 2016. XING S N. Evaluation of combined biotoxicity of heavy metals by zebrafish embryo development toxicity test[D]. Shanghai: Shanghai Normal University, 2016 (in Chinese).
[38] VELLINGER C, PARANT M, ROUSSELLE P, et al. Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex) [J]. Ecotoxicology, 2012, 21(7): 1817-1827. doi: 10.1007/s10646-012-0916-1 [39] VELLINGER C, GISMONDI E, FELTEN V, et al. Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses [J]. Aquatic Toxicology, 2013, 140/141: 106-116. doi: 10.1016/j.aquatox.2013.05.010 [40] MEHLER W T, DU J, LYDY M J, et al. Joint toxicity of a pyrethroid insecticide, cypermethrin, and a heavy metal, lead, to the benthic invertebrate Chironomus dilutus [J]. Environmental Toxicology and Chemistry, 2011, 30(12): 2838-2845. doi: 10.1002/etc.689 [41] LI X X, CUI X W, ZHANG X, et al. Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L. [J]. Journal of Hazardous Materials, 2020, 389: 121874. doi: 10.1016/j.jhazmat.2019.121874 [42] LIU X S, WANG J M, HUANG Y W. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic? [J]. Frontiers of Environmental Science & Engineering, 2022, 16(5): 59. [43] BROERSE M, OORSPRONG H, van GESTEL C A M. Cadmium affects toxicokinetics of pyrene in the collembolan Folsomia candida [J]. Ecotoxicology, 2012, 21(3): 795-802. doi: 10.1007/s10646-011-0839-2 [44] STEEVENS J A, BENSON W H. Toxicokinetic interactions and survival of Hyalella azteca exposed to binary mixtures of chlorpyrifos, dieldrin, and methyl mercury [J]. Aquatic Toxicology, 2001, 51(4): 377-388. doi: 10.1016/S0166-445X(00)00127-2 [45] GARBINSKI L D, ROSEN B P, CHEN J. Pathways of arsenic uptake and efflux [J]. Environment International, 2019, 126: 585-597. doi: 10.1016/j.envint.2019.02.058 [46] MILLER D S, SHAW J R, STANTON C R, et al. MRP2 and acquired tolerance to inorganic arsenic in the kidney of killifish (Fundulus heteroclitus) [J]. Toxicological Sciences, 2007, 97(1): 103-110. doi: 10.1093/toxsci/kfm030 [47] JEONG C B, KIM H S, KANG H M, et al. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology [J]. Aquatic Toxicology, 2017, 185: 29-39. doi: 10.1016/j.aquatox.2017.01.013