-
随着工业化的迅速发展,重金属污染在世界各地都成为了亟需关注的严重污染问题[1-2]. 重金属作为一种持久性有毒污染物[3],进入土壤后难以被生物降解而长期存在于土壤中,导致土壤污染和功能退化. 此外,重金属还会随着食物链在人体中富集,危及生命与健康[4]. 因此,对土壤中重金属的含量特征进行分析,评估重金属污染对环境带来的危害,是评估重金属污染对人体构成健康风险的前提[5].
土壤重金属污染评估中较常用的生态风险评价方法有单项污染指数法、地积累指数法、内梅罗指数法和Hakanson潜在生态风险指数法. 总体而言,单项污染指数法方法简单,易于分析对比数据,但结果过于片面、单一;地积累指数法考虑了自然成岩作用对环境背景值变化的影响,可在一定程度上弥补其他评价方法的缺点;内梅罗指数法强调污染最大值以及所测土壤的总体污染程度,以此反映土壤的综合污染状况. 相较于以上几种方法,Hakanson潜在生态风险指数法考虑了土壤多种重金属含量以及多元素协同作用、毒性水平、环境对重金属污染的敏感性等因素,可定量计算重金属潜在危害的影响程度,是目前最为全面,也是应用最广泛的一种方法[6]. 然而,其毒性响应系数的主观性和监测数据的不完全性、随机性也会使评价结果带有一定不确定性,若能平衡其随机性,将在很大程度上提高评价结果的准确性.
Monte-Carlo模拟是以概率论和数理统计为基础的一种数值计算方法[7],通过对假设变量在数据分布内进行随机抽样,由计算机模拟的预测值来表征和评估生态风险[8-9],在一定程度上可平衡Hakanson潜在生态风险指数法的随机性. 因此,Hakanson潜在生态风险指数法结合Monte-Carlo模拟能一定程度消除不确定性因素的影响,以概率的方式对生态风险评估作进一步完善. 相较传统的评估只是引入统计方法[10],而无具体结果 [11],Monte-Carlo模拟在一定程度上可使评价工作更直观清晰.
基于以上研究背景,本文以云南省内某处典型小流域为研究对象,将Monte-Carlo模拟结合Hakanson潜在生态风险指数法,对该地区土壤中的重金属环境风险展开评估. 通过获取土壤中的重金属生态风险概率分布情况,确定场地生态风险概率和重金属分布特征,为环境风险控制的管理者和执行者提供基础数据支持.
Monte-Carlo模拟在土壤重金属生态风险评价中的应用
Application of Monte-Carlo simulation in ecological risk assessment of heavy metals in soil
-
摘要: 离散检测数据的重金属生态风险评估往往受采样数据空间覆盖度有限、检测数据随机波动等问题影响,使评价结果具有较大的不确定性. 相对而言,基于地方区域的重金属概率统计以概率的形式解释污染等级的占比,能更有效指导风控方案的制定、污染的修复和场地的管控. 本文应用Monte-Carlo模拟结合Hakanson潜在生态风险指数法,对云南省内某小流域土壤中的8种重金属(Cd、Hg、As、Pb、Cr、Cu、Ni和Zn)展开调查,分别从单种金属的污染等级、风险等级,以及整个区域的生态风险三个维度阐述当地的污染状况,系统性评估了当地的生态风险. 研究表明Cd是主要污染贡献因子,其生态风险应引起重点关注. 本研究证实了Monte-Carlo模拟可有效平衡Hakanson潜在生态风险指数法的随机性,将二者结合可更加全面精确地反映重金属的生态风险.
-
关键词:
- 概率统计 /
- Monte-Carlo模拟 /
- Hakanson潜在生态风险指数法 /
- 重金属 /
- 生态风险评价.
Abstract: The ecological risk assessment of heavy metals is often hindered by the limited spatial coverage of the sampling area and fluctuation of the detection data, which resulted in high uncertainty of the evaluation results. The analysis on the statistical characteristics of heavy metal distribution will enable a determination of pollution levels based on probability, which can guide the establishment of effective strategies for risk control, pollution remediation, and site management. In this study, the Monte-Carlo simulation combined with the Hakanson potential ecological risk index method was used to investigate the distributions and risks of heavy metals (Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn) in the soil of a small watershed in Yunnan Province. The results illustrated the pollution and risk levels of individual metals as well as the entire region, and thus the locally ecological risk was systematically assessed. The results showed that Cd is the main pollution contributor and its ecological risk should be concerned in priority. This study confirmed that the Monte-Carlo simulation can effectively reduce the uncertainty of the Hakanson Potential Hazard Index method. The combination of these two methods can comprehensively and accurately describe the ecological risk of heavy metals. -
表 1 重金属毒性响应系数及元素含量背景值
Table 1. Toxicity response coefficient of heavy metals and background contents
Cd Hg As Pb Cr Cu Ni Zn Tir 30 40 10 5 2 5 5 1 背景值 0.097 0.065 11.2 26 61 22.6 26.9 74 表 2 生态危害指数分级标准[6]
Table 2. Ecological hazard index grading standard
$C^i_{\rm{f}}$ 污染程度
Pollution degree$E^i_{\rm{r}}$ 风险程度
Risk degreeRI 风险程度
Risk degree <1$C^i_{\rm{f}} $ 轻度 <40$E^i_{\rm{r}} $ 低危害 RI<150 低危害 1≤ <3$C^i_{\rm{f}} $ 中度 40≤ <80$E^i_{\rm{r}} $ 中等危害 150≤RI<300 中等危害 3≤ <6$C^i_{\rm{f}} $ 重度 80≤ <160$E^i_{\rm{r}} $ 较高危害 300≤RI<600 较高危害 6≤ $C^i_{\rm{f}} $ 非常重 160≤ <320$E^i_{\rm{r}} $ 高危害 600≤RI 高危害 320≤ $E^i_{\rm{r}} $ 极高危害 — 极高危害 表 3 实测土壤重金属含量统计结果(mg·kg−1)
Table 3. Statistical results of measured soil heavy metal content
Cd Hg As Pb Cr Cu Ni Zn 最大值 56 0.236 28.5 271 114 434 56.5 1466 最小值 0.071 0.012 5.46 13.9 46.5 6.96 18.1 62.4 中值 1.195 0.046 13.3 35.6 72.4 61.8 31.8 135 平均值 4.070 0.054 13.5 48.8 73.1 79.3 33.7 203 背景值[15] 0.097 0.065 11.2 26 61 22.6 26.9 74 变异系数/% 230 78.90 33.6 101 19.3 90.9 22.6 116 概率分布模型 对数正态分布 对数正态分布 最大极值分布 对数正态分布 Beta分布 对数正态分布 对数正态分布 对数正态分布 表 4 各重金属处于不同风险等级的概率(%)
Table 4. Probability of each heavy metal at different risk levels (%)
风险等级
Risk levelCd Hg As Pb Cr Cu Ni Zn 轻微 3.31 73.26 100 98.69 100 93.06 100 99.96 中等 9.42 21.68 0 1.19 0 6.16 0 0.04 较高 14.45 4.63 0 0.13 0 0.73 0 0 高 18.09 0.42 0 0 0 0.05 0 0 极高 54.73 0 0 0 0 0 0 0 表 5 各重金属在不同概率条件下的Eir分布
Table 5. Eir distribution of each heavy metal under different probability conditions
概率/%
ProbabilityCd Hg As Pb Cr Cu Ni Zn 10 67.46 11.01 7.61 3.51 1.82 5.05 4.58 1.05 20 115.73 14.92 8.71 4.17 1.98 7.13 5.09 1.20 30 177.48 18.36 9.64 4.91 2.11 8.99 5.47 1.37 40 262.79 22.06 10.50 5.70 2.23 10.98 5.80 1.57 50 382.41 26.07 11.41 6.64 2.35 13.27 6.13 1.83 60 548.88 30.96 12.42 7.81 2.47 15.95 6.50 2.15 70 832.93 37.37 13.60 9.4 2.62 19.59 6.91 2.63 80 1348.49 46.34 15.19 12.1 2.78 24.80 7.43 3.36 90 2694.16 62.25 17.49 17.08 3.02 34.82 8.19 4.93 表 6 各重金属的污染等级和风险等级
Table 6. Pollution levels and risk levels of heavy metals
Cd Hg As Pb Cr Cu Ni Zn 污染等级 非常重 轻度 中度 中度 中度 重度 中度 中度 风险等级 极高 轻微 轻微 轻微 轻微 轻微 轻微 轻微 -
[1] FACCHINELLI A, SACCHI E, MALLEN L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils [J]. Environmental Pollution, 2001, 114(3): 313-324. doi: 10.1016/S0269-7491(00)00243-8 [2] SOLGI E, ESMAILI-SARI A, RIYAHI-BAKHTIARI A, et al. Soil contamination of metals in the three industrial estates, arak, Iran [J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(4): 634-638. doi: 10.1007/s00128-012-0553-7 [3] REYNDERS H, BERVOETS L, GELDERS M, et al. Accumulation and effects of metals in caged carp and resident roach along a metal pollution gradient [J]. Science of the Total Environment, 2008, 391(1): 82-95. doi: 10.1016/j.scitotenv.2007.10.056 [4] OLAWOYIN R, OYEWOLE S A, GRAYSON R L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta [J]. Ecotoxicology and Environmental Safety, 2012, 85: 120-130. doi: 10.1016/j.ecoenv.2012.08.004 [5] YI Y J, YANG Z F, ZHANG S H. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River Basin [J]. Environmental Pollution, 2011, 159(10): 2575-2585. doi: 10.1016/j.envpol.2011.06.011 [6] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [7] WU H J, CHEN B. Using statistical and probabilistic methods to evaluate health risk assessment: A case study [J]. Toxics, 2014, 2(2): 291-306. [8] EVANS J R. Statistics, data analysis, and decision modeling[M]. 3rd ed. Upper Saddle River, NJ: Pearson/Prentice Hall, 2007. [9] 张应华, 刘志全, 李广贺, 等. 基于不确定性分析的健康环境风险评价 [J]. 环境科学, 2007, 28(7): 1409-1415. doi: 10.3321/j.issn:0250-3301.2007.07.001 ZHANG Y H, LIU Z Q, LI G H, et al. Uncertainty analysis of health risk assessment caused by benzene contamination in a contaminated site [J]. Environmental Science, 2007, 28(7): 1409-1415(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.07.001
[10] QI P Z, QU C K, ALBANESE S, et al. Investigation of polycyclic aromatic hydrocarbons in soils from Caserta provincial territory, southern Italy: Spatial distribution, source apportionment, and risk assessment [J]. Journal of Hazardous Materials, 2020, 383: 121158. doi: 10.1016/j.jhazmat.2019.121158 [11] WANG Z Y, SHEN Q S, HUA P, et al. Characterizing the anthropogenic-induced trace elements in an urban aquatic environment: A source apportionment and risk assessment with uncertainty consideration [J]. Journal of Environmental Management, 2020, 275: 111288. doi: 10.1016/j.jenvman.2020.111288 [12] MA Z D. Hazard of heavy metal pollution in farmland soil and its ecological risk assessment method [J]. IOP Conference Series Earth and Environmental Science, 2021, 781(3): 032052. doi: 10.1088/1755-1315/781/3/032052 [13] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算 [J]. 环境科学与技术, 2008, 31(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030 XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index [J]. Environmental Science & Technology, 2008, 31(2): 112-115(in Chinese). doi: 10.3969/j.issn.1003-6504.2008.02.030
[14] KLEMT W H, BRUA R B, CULP J M, et al. Evaluating lower Athabasca River sediment metal concentrations from Alberta oil sands monitoring programs using predevelopment baselines [J]. Environmental Science & Technology, 2021, 55(13): 8817-8828. [15] 魏复盛, 杨国治, 蒋德珍, 刘志虹, 孙本民. 中国土壤元素背景值基本统计量及其特征 [J]. 中国环境监测, 1991, 7(1): 1-6. doi: 10.19316/j.issn.1002-6002.1991.01.001 WEI F S, YANG G Z, JIANG D Z, et al. Basic statistics and characteristics of background values of soil elements in China [J]. Environmental Monitoring in China, 1991, 7(1): 1-6(in Chinese). doi: 10.19316/j.issn.1002-6002.1991.01.001
[16] GHOLIZADEH M, PATIMAR R. Ecological risk assessment of heavy metals in surface sediments from the Gorgan Bay, Caspian Sea [J]. Marine Pollution Bulletin, 2018, 137: 662-667. doi: 10.1016/j.marpolbul.2018.11.009 [17] SAHA P, PAUL B. Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique [J]. Human and Ecological Risk Assessment:an International Journal, 2019, 25(4): 966-987. doi: 10.1080/10807039.2018.1458595 [18] WANG Y, TIAN C, WANG Z, et al. Health risk and temporal trend of dietary potentially toxic elements exposure in the residents of the Shenzhen metropolis, China, between 2005 and 2017: A risk assessment based on probabilistic estimation [J]. Environmental Geochemistry and Health, 2021, 43(1): 113-126. doi: 10.1007/s10653-020-00675-3 [19] HUANG S, WANG L Y, ZHAO Y. Ecological risk assessment from the perspective of soil heavy metal accumulations in Xiamen City, China [J]. International Journal of Sustainable Development & World Ecology, 2018, 25(5): 411-419. [20] ZHU H N, XING W Q, ZHANG L B, et al. Ecological risk analysis of heavy metals in farmland soil based on Monte Carlo simulation [J]. IOP Conference Series Earth and Environmental Science, 2020, 601(1): 012041. doi: 10.1088/1755-1315/601/1/012041 [21] DJAHED B, KERMANI M, FARZADKIA M, et al. Exposure to heavy metal contamination and probabilistic health risk assessment using Monte Carlo simulation: A study in the Southeast Iran [J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 1217-1226. doi: 10.1007/s40201-020-00539-z [22] SANAEI F, AMIN M M, ALAVIJEH Z P, et al. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index [J]. Environmental Science and Pollution Research, 2021, 28(2): 1479-1490. doi: 10.1007/s11356-020-10450-7 [23] WANG Q, LIU J F, CHEN Z, et al. A causation-based method developed for an integrated risk assessment of heavy metals in soil [J]. Science of the Total Environment, 2018, 642: 1396-1405. doi: 10.1016/j.scitotenv.2018.06.118 [24] 唐明灯, 李盟军, 王艳红, 等. 猪场废弃物对Cd超标土壤生菜生长及Cd含量的影响 [J]. 农业环境科学学报, 2016, 35(3): 558-564. doi: 10.11654/jaes.2016.03.020 TANG M D, LI M J, WANG Y H, et al. Effects of pig farm wastes on growth and Cd concentrations of lettuce grown in a cadmium polluted soil [J]. Journal of Agro-Environment Science, 2016, 35(3): 558-564(in Chinese). doi: 10.11654/jaes.2016.03.020