-
汞(Hg)是一种能随大气进行长距离传输的全球性环境污染物[1 − 2]. 自然环境中的汞可分为无机汞(汞单质、一价汞和二价汞等)和有机汞(甲基汞、乙基汞和苯基汞等). 其中,甲基汞(MeHg)由于强的神经毒性和生物富集性而引起人们的广泛关注[3]. 无机汞的甲基化是汞生物地球化学循环中的重要环节,同时威胁着人类的健康.
一般认为,厌氧微生物作用是驱动无机汞转化为甲基汞最主要的方式[4 − 7]. HgcAB基因调控微生物的汞甲基化过程,是汞甲基化微生物的标志性基因[8]. 根据hgcAB基因在微生物中的分布,将汞甲基化微生物分为5个进化枝,包括δ-变形菌门的3类(硫酸盐还原菌、铁还原菌、互营杆菌)、厚壁菌门和部分古菌(产甲烷菌)[2,9]. 过去很长一段时间,关于微生物汞甲基化的研究大多以硫酸盐还原菌和铁还原菌展开. 近年来的研究表明,产甲烷菌在汞甲基化过程中具有重要地位:(1)在沉积物、水体和土壤等环境中,产甲烷菌与汞甲基化过程密切相关[10 − 12]. 部分区域中,汞甲基化关键基因(hgcAB基因)在产甲烷菌中的基因丰度显著高于其他汞甲基化微生物[13 − 15];(2)在实验室纯培养体系中,多株产甲烷菌具有与硫酸盐还原菌、铁还原菌相当甚至更高的汞甲基化效率[9, 16 − 17];(3)进化分析显示,hgcAB基因和汞甲基化途径的钴铁硫蛋白起源于产甲烷菌,产甲烷菌可能是最早进行汞甲基化的微生物[18].
目前,尽管部分关于微生物汞甲基化的综述中对产甲烷菌汞甲基化的研究进展进行简单归纳[6 − 7, 19 − 20],但缺乏对产甲烷菌汞甲基化作用的系统总结. 同时,关于微生物汞甲基化途径的研究主要集中在硫酸盐还原菌和铁还原菌,缺乏对产甲烷菌汞甲基化途径的探讨. 本文在前人研究的基础上,系统总结了产甲烷菌在原位环境、纯培养和共培养体系中对汞甲基化的作用. 从生物代谢的角度,对产甲烷菌汞甲基化的途径进行探讨,提出产甲烷途径是产甲烷菌汞甲基化可能的途径之一,以期为微生物汞甲基化的研究提供新的方向和思路.
产甲烷菌中汞甲基化研究进展与展望
Research progress and prospect of mercury methylation in methanogens
-
摘要: 微生物作用是无机汞转化为甲基汞最主要的方式. 其中,硫酸盐还原菌和铁还原菌被认为是主要的汞甲基化微生物,近年来的研究表明,产甲烷菌在汞甲基化过程中同样发挥重要作用. 产甲烷菌参与沉积物、水体和土壤等多种环境中的汞甲基化过程,并在部分环境中主导甲基汞的生成;在实验室纯培养体系中,多个产甲烷菌能将10%以上的无机汞转化为甲基汞. 产甲烷菌对于甲基汞的生成至关重要,然而目前缺乏对产甲烷菌汞甲基化作用的系统总结. 本文分别从原位环境、纯培养和共培养的角度,详细阐述了产甲烷菌在汞甲基化中的作用. 在此基础上,对产甲烷菌可能的汞甲基化途径进行探讨,提出汞甲基化过程与一碳代谢极大可能存在功能上的关联性,并展望了后续研究的方向和重点.Abstract: Microbial transformation is the most important way to convert inorganic mercury to methylmercury. Among them, sulfate-reducing bacteria and iron-reducing bacteria are considered to be the primary mercury methylation microorganisms. In recent years, several studies have shown that methanogens also play an important role in mercury methylation. Methanogens are involved in the process of mercury methylation in a variety of environmental medias, including anaerobic sediments, freshwater, and soils, leading to the formation of methylmercury. In addition, more than 10% of inorganic mercury was converted to methylmercury by several methanogens in pure culture systems. Methanogens are crucial to the production of methylmercury. However, there is a lack of systematic summary of mercury methylation in methanogens. In this paper, the role of methanogens in mercury methylation was summarized from the perspectives of in situ environment, laboratory pure culture, and co-culture systems. Based on this summary, the possible mercury methylation pathways of methanogens and future research directions were proposed and discussed. It was suggested that the mercury methylation process may be functionally related to one-carbon metabolism.
-
Key words:
- methanogens /
- methylation /
- methylmercury /
- metabolic pathways.
-
表 1 原位环境中与汞甲基化相关的产甲烷菌
Table 1. Mercury methylation-related methanogens in situ habitat
原位环境
In situ habitat位点
Site产甲烷菌
Methanogen文献
Reference沉积物 河口沉积物 圣哈辛托河(美国) 甲烷八叠球菌科Methanosarcinaceae [10] 河流沉积物 橡树岭东部(美国) 甲烷鬃毛菌科Methanosaetaceae
甲烷八叠球菌科Methanosarcinaceae
甲烷球菌科Methanococcaceae[13] 河流沉积物 圣劳伦斯河(加拿大) — [22] 河流沉积物 圣莫里斯河(加拿大) 甲烷绳菌属Methanolinea
Methanoregula*
甲烷螺菌属Methanospirillum[23] 湖泊沉积物 瑞典北部 马赛球菌属Methanomassiliicoccus
Methanoregula*[24] 海洋沉积物 智利、挪威、南极、波罗的海等 马赛球菌属Methanomassiliicoccus
甲烷螺菌属Methanospirillum
甲烷叶菌属Methanolobus
甲烷泡菌属Methanofollis
甲烷胞菌属Methanocella
甲烷粒菌属Methanocorpusculum
Methanoregula*[18] 水体 水生周丛植物
生物膜圣劳伦斯河(加拿大) 甲烷杆菌目Methanobacteriales
甲烷球菌目Methanococcales
甲烷八叠球菌目Methanosarcinales[11] 富营养水体 巢湖、东湖、滇池(中国) — [14] 海水 赤道北部太平洋 马赛球菌属Methanomassiliicoccus [25] 海水 南极 甲烷微菌纲Methanomicrobia [26] 土壤 稻田土壤 万山矿区、铜仁矿区、凤凰矿区
(中国)甲烷螺菌属Methanospirillum
Methanosphaerula*
Methanoregula*
马赛球菌属Methanomassiliicoccus
甲烷叶菌属Methanolobus
甲烷泡菌属Methanofollis
甲烷粒菌属Methanocorpusculum
甲烷胞菌属Methanocella
甲烷球菌纲Methanococci
甲烷杆菌纲Methanobacteria[12, 15, 27] 稻田土壤 阿肯色大学水稻研究和
推广中心(美国)Methanoregula*
甲烷胞菌属Methanocella
甲烷螺菌属Methanospirillum[28] 泥炭地 波的尼亚湾
(瑞典)Methanoregulaceae*
马赛球菌科Methanomassiliicoccaceae
甲烷杆菌科Methanobacteriaceae
Methanoregulaceae*
Methanotrichaceae*[29] 沼泽地土壤 大沼泽地国家森林公园
(美国)甲烷胞菌属Methanoregula
甲烷叶菌属Methanolobus
Methanoregula*[30] 湿地土壤 瑞典北部 甲烷八叠球菌目Methanosarcinales
热源体门Thermoplasmatota[31] 高原永久冻土 青藏高原(中国) 甲烷胞菌属Methanocella
Methanoregula*[32] 永久冻土 博南扎河(美国) 甲烷叶菌属Methanolobus
Methanoregula*
马赛球菌属Methanomassiliicoccus[18] 永久冻土 阿拉斯加州(美国)、瑞典、
芬兰等— [33 − 35] 注:“*”表示部分目、科和属暂无中文译名;“—”表示没有检测该环境中产甲烷菌的具体种类.
Note: “*” indicates that some orders, families, and genera do not have Chinese translated names; “—” indicates that the specific species of methanogens in the environment is not detected.表 2 实验室纯培养中的汞甲基化产甲烷菌
Table 2. Mercury methylators of methanogens in laboratory pure cultures
细菌名称
Strain纲
Class目
Order科
Family编号
Number温度/℃
Temperature底物
Substrate产甲烷途径
Methanogenic
pathway甲基化效率/%
Methylation
efficiency
(MeHg/THg)文献
ReferenceMethanofollis liminatans GKZPZ 甲烷微菌纲 甲烷微菌目 甲烷微菌科 DSM 4140 40 H2+CO2/甲酸、丙醇、丁醇 CO2还原途径 0.19—2.25 [16, 55] Methanocorpusculum bavaricum 甲烷微菌纲 甲烷微菌目 甲烷粒菌科 DSM 4179 37 H2+CO2/甲酸、丙醇、丁醇 CO2还原途径 0.24 [16, 56] Methanospirillum hungatei JF-1 甲烷微菌纲 甲烷微菌目 甲烷螺菌科 DSM 864 30—37 H2+CO2/
甲酸CO2还原途径 43.00—64.20 [16, 50] Methanosphaerula palustris E1-9c 甲烷微菌纲 甲烷微菌目 Methanoregulaceae* DSM 19958 30 H2+CO2/
甲酸CO2还原途径 15.00 [16, 57] Methanolobus tindarius 甲烷微菌纲 甲烷八叠球菌目 甲烷八叠球菌科 DSM 2278 37 甲醇、甲胺 甲基营养途径 0.32—22.10 [9, 16, 47] Methanomethylovorans hollandica 甲烷微菌纲 甲烷八叠球菌目 甲烷八叠球菌科 DSM 15978 34—37 甲醇、甲胺、甲硫醇、二甲基硫醚 甲基营养途径 1.03—3.00 [9, 16, 48] Methanocella paludicola SANAE 甲烷微菌纲 甲烷胞菌目 Methanocellaceae* DSM 17711 37 H2+CO2/
甲酸CO2还原途径 8.63 [16, 58] Methanomassiliicoccus luminyensis B10 热源体纲 马赛球菌目 马赛球菌科 DSM 25720 37 甲醇/H2 甲基营养途径 1.01—53.40 [16, 18, 46] 注:八株菌均属于古菌界、广古菌门;“*”表示部分科暂无中文译名.
Note: All the eight strains belong to the Euryarchaeota of Archaea;“*” indicates that some families do not have Chinese translated names. -
[1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10): 4967-4983. [2] 史建波, 阴永光, 江桂斌. 汞的分子转化与长距离传输[M]. 北京: 科学出版社, 2019. SHI J B, YIN Y G, JIANG G B. Molecular transformation and long-distance transport of mercury[M]. Beijing: Science Press, 2019 (in Chinese).
[3] TSZ-KI TSUI M, LIU S N, BRASSO R L, et al. Controls of methylmercury bioaccumulation in forest floor food webs[J]. Environmental Science & Technology, 2019, 53(5): 2434-2440. [4] BOENING D W. Ecological effects, transport, and fate of mercury: A general review[J]. Chemosphere, 2000, 40(12): 1335-1351. doi: 10.1016/S0045-6535(99)00283-0 [5] CHÉTELAT J, ACKERMAN J T, EAGLES-SMITH C A, et al. Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation[J]. Science of the Total Environment, 2020, 711: 135117. doi: 10.1016/j.scitotenv.2019.135117 [6] TANG W L, LIU Y R, GUAN W Y, et al. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability[J]. Science of the Total Environment, 2020, 714: 136827. doi: 10.1016/j.scitotenv.2020.136827 [7] MA M, DU H X, WANG D Y. Mercury methylation by anaerobic microorganisms: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(20): 1893-1936. doi: 10.1080/10643389.2019.1594517 [8] PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6125): 1332-1335. doi: 10.1126/science.1230667 [9] GILMOUR C C, PODAR M, BULLOCK A L, et al. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 2013, 47(20): 11810-11820. [10] WANG Y W, ROTH S, SCHAEFER J K, et al. Production of methylmercury by methanogens in mercury contaminated estuarine sediments[J]. FEMS Microbiology Letters, 2020, 367(23): fnaa196. doi: 10.1093/femsle/fnaa196 [11] HAMELIN S, AMYOT M, BARKAY T, et al. Methanogens: Principal methylators of mercury in lake periphyton[J]. Environmental Science & Technology, 2011, 45(18): 7693-7700. [12] VISHNIVETSKAYA T A, HU H Y, VAN NOSTRAND J D, et al. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China[J]. Environmental Science: Processes & Impacts, 2018, 20(4): 673-685. [13] CHRISTENSEN G A, SOMENAHALLY A C, MOBERLY J G, et al. Carbon amendments alter microbial community structure and net mercury methylation potential in sediments[J]. Applied and Environmental Microbiology, 2018, 84(3): e01049-e01017. [14] LEI P, ZHANG J, ZHU J J, et al. Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes[J]. Environmental Science & Technology, 2021, 55(15): 10811-10820. [15] LIU Y R, JOHS A, BI L, et al. Unraveling microbial communities associated with methylmercury production in paddy soils[J]. Environmental Science & Technology, 2018, 52(22): 13110-13118. [16] GILMOUR C C, BULLOCK A L, McBURNEY A, et al. Robust mercury methylation across diverse methanogenic Archaea[J]. mBio, 2018, 9(2): e02403-e02417. [17] YU R Q, REINFELDER J R, HINES M E, et al. Mercury methylation by the methanogen Methanospirillum hungatei[J]. Applied and Environmental Microbiology, 2013, 79(20): 6325-6330. doi: 10.1128/AEM.01556-13 [18] PODAR M, GILMOUR C C, BRANDT C C, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation[J]. Science Advances, 2015, 1(9): e1500675. doi: 10.1126/sciadv.1500675 [19] YU R Q, BARKAY T. Microbial mercury transformations: Molecules, functions and organisms[J]. Advances in Applied Microbiology, 2022, 118: 31-90. [20] DUAN P F, KHAN S, ALI N, et al. Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices[J]. Arabian Journal of Chemistry, 2020, 13(9): 6949-6965. doi: 10.1016/j.arabjc.2020.06.041 [21] CHRISTENSEN G A, WYMORE A M, KING A J, et al. Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment[J]. Applied and Environmental Microbiology, 2016, 82(19): 6068-6078. doi: 10.1128/AEM.01271-16 [22] AVRAMESCU M L, YUMVIHOZE E, HINTELMANN H, et al. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada[J]. Science of the Total Environment, 2011, 409(5): 968-978. doi: 10.1016/j.scitotenv.2010.11.016 [23] MILLERA FERRIZ L, PONTON D E, STORCK V, et al. Role of organic matter and microbial communities in mercury retention and methylation in sediments near Run-of-river hydroelectric dams[J]. Science of the Total Environment, 2021, 774: 145686. doi: 10.1016/j.scitotenv.2021.145686 [24] BRAVO A G, PEURA S, BUCK M, et al. Methanogens and iron-reducing bacteria: The overlooked members of mercury-methylating microbial communities in boreal lakes[J]. Applied and Environmental Microbiology, 2018, 84(23): e01774-e01718. [25] BOWMAN K L, COLLINS R E, AGATHER A M, et al. Distribution of mercury-cycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation[J]. Limnology and Oceanography, 2019, 65: S310-S320. [26] SHARMA GHIMIRE P, TRIPATHEE L, ZHANG Q G, et al. Microbial mercury methylation in the cryosphere: Progress and prospects[J]. The Science of the Total Environment, 2019, 697: 134150. doi: 10.1016/j.scitotenv.2019.134150 [27] LIU Y R, YU R Q, ZHENG Y M, et al. Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient[J]. Applied and Environmental Microbiology, 2014, 80(9): 2874-2879. doi: 10.1128/AEM.04225-13 [28] ROTHENBERG S E, ANDERS M, AJAMI N J, et al. Water management impacts rice methylmercury and the soil microbiome[J]. Science of the Total Environment, 2016, 572: 608-617. doi: 10.1016/j.scitotenv.2016.07.017 [29] WANG B L, HU H Y, BISHOP K, et al. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence[J]. Journal of Hazardous Materials, 2023, 442: 130057. doi: 10.1016/j.jhazmat.2022.130057 [30] SCHAEFER J K, KRONBERG R M, MOREL F M M, et al. Detection of a key Hg methylation gene, hgcA, in wetland soils[J]. Environmental Microbiology Reports, 2014, 6(5): 441-447. doi: 10.1111/1758-2229.12136 [31] XU J Y, LIEM-NGUYEN V, BUCK M, et al. Mercury methylating microbial community structure in boreal wetlands explained by local physicochemical conditions[J]. Frontiers in Environmental Science, 2021, 8: 518662. doi: 10.3389/fenvs.2020.518662 [32] LIU Y R, DONG J X, ZHANG Q G, et al. Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau[J]. Environmental Pollution, 2016, 218: 1342-1349. doi: 10.1016/j.envpol.2016.08.093 [33] MACKELPRANG R, WALDROP M P, DeANGELIS K M, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw[J]. Nature, 2011, 480(7377): 368-371. doi: 10.1038/nature10576 [34] YANG Z M, FANG W, LU X, et al. Warming increases methylmercury production in an Arctic soil[J]. Environmental Pollution, 2016, 214: 504-509. doi: 10.1016/j.envpol.2016.04.069 [35] TARBIER B, HUGELIUS G, KRISTINA SANNEL A B, et al. Permafrost thaw increases methylmercury formation in subarctic fennoscandia[J]. Environmental Science & Technology, 2021, 55(10): 6710-6717. [36] COMPEAU G C, BARTHA R. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2): 498-502. doi: 10.1128/aem.50.2.498-502.1985 [37] FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1): 457-464. doi: 10.1128/AEM.72.1.457-464.2006 [38] YUAN K, CHEN X, CHEN P, et al. Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109722. doi: 10.1016/j.ecoenv.2019.109722 [39] 周心劝. 稻田土壤中微生物群落对甲基汞积累的影响[D]. 重庆: 西南大学, 2019. ZHOU X Q. Effects of microbial communities on the accumulation of methylmercury in paddy soils[D]. Chongqing: Southwest University, 2019 (in Chinese).
[40] ZHAO L, MENG B, FENG X B. Mercury methylation in rice paddy and accumulation in rice plant: A review[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110462. doi: 10.1016/j.ecoenv.2020.110462 [41] 高润霞, 罗文倩, 胡海艳, 等. 稻田土壤中汞的微生物甲基化研究进展[J]. 宁夏农林科技, 2020, 61(1): 46-49. GAO R X, LUO W Q, HU H Y, et al. Research progress of microbial methylation of mercury in paddy soil[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(1): 46-49 (in Chinese).
[42] CLARKE R T, HUNGATE R E. Culture of the rumen holotrich ciliate Dasytricha ruminantium schuberg[J]. Applied Microbiology, 1966, 14(3): 340-345. doi: 10.1128/am.14.3.340-345.1966 [43] SMITH P H, HUNGATE R E. Isolation and characterization of Methanobacterium ruminantium n. sp[J]. Journal of Bacteriology, 1958, 75(6): 713-718. doi: 10.1128/jb.75.6.713-718.1958 [44] BRYANT M P, WOLIN E A, WOLIN M J, et al. Methanobacillus omelianskii, a symbiotic association of two species of bacteria[J]. Archiv Fur Mikrobiologie, 1967, 59(1): 20-31. [45] WOOD J M, KENNEDY F S, ROSEN C G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220(5163): 173-174. doi: 10.1038/220173a0 [46] DRIDI B, FARDEAU M L, OLLIVIER B, et al. Methanomassiliicoccus luminyensis Gen nov sp nov , a methanogenic archaeon isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8): 1902-1907. [47] KÖNIG H, STETTER K O. Isolation and characterization of Methanolobus tindarius sp nov, a coccoid methanogen growing only on methanol and methylamines[J]. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 1982, 3(4): 478-490. [48] LOMANS B P, MAAS R, LUDERER R, et al. Isolation and characterization of Methanomethylovorans hollandica Gen nov sp nov , isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol[J]. Applied and Environmental Microbiology, 1999, 65(8): 3641-3650. [49] LIU Y C, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189. doi: 10.1196/annals.1419.019 [50] FERRY J G, SMITH P H, WOLFE R S. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov[J]. International Journal of Systematic Bacteriology, 1974, 24(4): 465-469. doi: 10.1099/00207713-24-4-465 [51] BENOIT J M, GILMOUR C C, MASON R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters[J]. Environmental Science & Technology, 1999, 33(6): 951-957. [52] BENOIT J M, GILMOUR C C, MASON R P. Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3)[J]. Applied and Environmental Microbiology, 2001, 67(1): 51-58. doi: 10.1128/AEM.67.1.51-58.2001 [53] OREM W, GILMOUR C, AXELRAD D, et al. Sulfur in the south Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and management for restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(sup1): 249-288. doi: 10.1080/10643389.2010.531201 [54] BENOIT J M, GILMOUR C C, HEYES A, et al. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2002: 262-297. [55] ZELLNER G, SLEYTR U B, MESSNER P, et al. Methanogenium liminatans spec nov , a new coccoid, mesophilic methanogen able to oxidize secondary alcohols[J]. Archives of Microbiology, 1990, 153(3): 287-293. [56] ZELLNER G, STACKEBRANDT E, MESSNER P, et al. Methanocorpusculaceae fam. nov, represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec nov and Methanocorpusculum bavaricum spec. nov[J]. Archives of Microbiology, 1989, 151(5): 381-390. doi: 10.1007/BF00416595 [57] CADILLO-QUIROZ H, YAVITT J B, ZINDER S H. Methanosphaerula palustris gen. nov sp nov , a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 5): 928-935. [58] SAKAI S, IMACHI H, HANADA S, et al. Methanocella paludicola gen. nov sp nov , a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 4): 929-936. [59] YU R Q, REINFELDER J R, HINES M E, et al. Syntrophic pathways for microbial mercury methylation[J]. The ISME Journal, 2018, 12(7): 1826-1835. doi: 10.1038/s41396-018-0106-0 [60] PAK K, BARTHA R. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens[J]. Applied and Environmental Microbiology, 1998, 64(6): 1987-1990. doi: 10.1128/AEM.64.6.1987-1990.1998 [61] ABRAM J W, NEDWELL D B. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen[J]. Archives of Microbiology, 1978, 117(1): 89-92. doi: 10.1007/BF00689356 [62] BRYANT M P, CAMPBELL L L, REDDY C A, et al. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria[J]. Applied and Environmental Microbiology, 1977, 33(5): 1162-1169. doi: 10.1128/aem.33.5.1162-1169.1977 [63] PHELPS T J, CONRAD R, ZEIKUS J G. Sulfate-dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol[J]. Applied and Environmental Microbiology, 1985, 50(3): 589-594. doi: 10.1128/aem.50.3.589-594.1985 [64] KRIVORUCHKO A, ZHANG Y M, SIEWERS V, et al. Microbial acetyl-CoA metabolism and metabolic engineering[J]. Metabolic Engineering, 2015, 28: 28-42. doi: 10.1016/j.ymben.2014.11.009 [65] NIKOLAU B J, OLIVER D J, SCHNABLE P S, et al. Molecular biology of acetyl-CoA metabolism[J]. Biochemical Society Transactions, 2000, 28(6): 591-593. doi: 10.1042/bst0280591 [66] SCHÖNE C, POEHLEIN A, JEHMLICH N, et al. Deconstructing Methanosarcina acetivorans into an acetogenic archaeon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(2): e2113853119. [67] KIM Y T, JUNG J H, STEWART L C, et al. Complete genome sequence of the hyperthermophilic methanogen Methanocaldococcus bathoardescens JH146T isolated from the basalt subseafloor[J]. Marine Genomics, 2015, 24: 229-230. doi: 10.1016/j.margen.2015.06.002 [68] LINDAHL P A, CHANG B. The evolution of acetyl-CoA synthase[J]. Origins of Life and Evolution of the Biosphere, 2001, 31(4): 403-434. [69] MARTIN W F. Older than genes: The acetyl CoA pathway and origins[J]. Frontiers in Microbiology, 2020, 11: 817. doi: 10.3389/fmicb.2020.00817 [70] CHOI S C, CHASE T, BARTHA R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS[J]. Applied and Environmental Microbiology, 1994, 60(11): 4072-4077. doi: 10.1128/aem.60.11.4072-4077.1994 [71] BERMAN M, CHASE T, BARTHA R. Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans[J]. Applied and Environmental Microbiology, 1990, 56(1): 298-300. doi: 10.1128/aem.56.1.298-300.1990 [72] FINKELSTEIN J D. Methionine metabolism in mammals[J]. The Journal of Nutritional Biochemistry, 1990, 1(5): 228-237. doi: 10.1016/0955-2863(90)90070-2 [73] DUCKER G S, RABINOWITZ J D. One-carbon metabolism in health and disease[J]. Cell Metabolism, 2017, 25(1): 27-42. doi: 10.1016/j.cmet.2016.08.009 [74] RODIONOV D A, VITRESCHAK A G, MIRONOV A A, et al. Comparative genomics of the methionine metabolism in Gram-positive bacteria: A variety of regulatory systems[J]. Nucleic Acids Research, 2004, 32(11): 3340-3353. doi: 10.1093/nar/gkh659 [75] BANERJEE R V, MATTHEWS R G. Cobalamin-dependent methionine synthase[J]. The FASEB Journal, 1990, 4(5): 1450-1459. doi: 10.1096/fasebj.4.5.2407589 [76] FROESE D S, FOWLER B, BAUMGARTNER M R. Vitamin B12, folate, and the methionine remethylation cycle—Biochemistry, pathways, and regulation[J]. Journal of Inherited Metabolic Disease, 2019, 42(4): 673-685. doi: 10.1002/jimd.12009 [77] PANAYIOTIDIS M I, STABLER S P, AHMAD A, et al. Activation of a novel isoform of methionine adenosyl transferase 2A and increased S-adenosylmethionine turnover in lung epithelial cells exposed to hyperoxia[J]. Free Radical Biology and Medicine, 2006, 40(2): 348-358. doi: 10.1016/j.freeradbiomed.2005.09.004 [78] WANG P P, BAO P, SUN G X. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp . BXM[J]. FEMS Microbiology Letters, 2015, 362(1): 1-8. [79] LANDNER L. Biochemical Model for the Biological Methylation of Mercury suggested from Methylation Studies in vivo with Neurospora crassa[J]. Nature, 1971, 230(5294): 452-454. doi: 10.1038/230452a0 [80] EKSTROM E B, MOREL F M M, BENOIT J M. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2003, 69(9): 5414-5422. doi: 10.1128/AEM.69.9.5414-5422.2003 [81] EKSTROM E B, MOREL F M M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria[J]. Environmental Science & Technology, 2008, 42(1): 93-99. [82] REISINGER K, STOEPPLER M, NÜRNBERG H W. Methylcarbenium ion transfer from S‐adenosylmethionine to inorganic mercury—One of the possible biological pathways to methylmercury?[J]. Toxicological & Environmental Chemistry, 1984, 8(1): 45-54. [83] OLTEANU H, BANERJEE R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation[J]. Journal of Biological Chemistry, 2001, 276(38): 35558-35563. doi: 10.1074/jbc.M103707200 [84] WILSON A, LECLERC D, ROSENBLATT D S, et al. Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism[J]. Human Molecular Genetics, 1999, 8(11): 2009-2016. doi: 10.1093/hmg/8.11.2009 [85] ZHOU J, RICCARDI D, BESTE A, et al. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II)[J]. Inorganic Chemistry, 2014, 53(2): 772-777. doi: 10.1021/ic401992y [86] WOOD J M. Biological cycles for toxic elements in the environment[J]. Science, 1974, 183(4129): 1049-1052. doi: 10.1126/science.183.4129.1049 [87] LI J J, SUN C X, CAI W W, et al. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms[J]. Mutation Research. Reviews in Mutation Research, 2021, 788: 108396. doi: 10.1016/j.mrrev.2021.108396 [88] 方晓瑜, 李家宝, 芮俊鹏, 等. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1): 1-9. FANG X Y, LI J B, RUI J P, et al. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9 (in Chinese).
[89] BOTT M H, EIKMANNS B, THAUER R K. Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source[J]. Archives of Microbiology, 1985, 143(3): 266-269. doi: 10.1007/BF00411248 [90] THAUER R K. Biochemistry of methanogenesis: A tribute to marjory stephenson: 1998 marjory stephenson prize lecture[J]. Microbiology, 1998, 144 ( Pt 9): 2377-2406.