-
微塑料是指长度或等容粒径小于等于5 mm的塑料颗粒和碎片,包括粒料、微纤维、颗粒、泡沫或者薄膜等[1]. 其主要组成成分为聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚氨酯(PU)、聚酰胺(PI)、聚酰胺(PA)、聚乳酸(PLA)及聚对苯二甲酸乙二酯(PET)等聚合物[2]. 目前,微塑料污染已在空气、土壤、湖泊、河流和海洋[3 − 4], 甚至是食物[5]和饮用水[6]等各种介质中检出; 另外,微塑料比表面积大,表面疏水性强,易于富集微生物、重金属和有机污染物[7],随着食物链传递和富集, 会对人体健康产生严重危害[8 − 11].
微塑料1972年首次在美国西部沿海被发现,当时研究发现大量0.25—0.5 cm的塑料颗粒[12]; 2004年,英国学者Thompson将其在显微镜下观测到的微小塑料碎片和纤维称为“微塑料(Microplastics)”[1]; Arthur等将微塑料的尺寸上限确定为5 mm[13]. 随着全球塑料产量的快速增长(2019年全球产量超过3.6亿吨[14]),带来的微塑料污染问题也不断增加. 对全球各地的水、沉积物、生物体等造成严重影响. 2022年5月,国务院通过了《新污染物治理行动方案》. 该方案旨在建立健全新污染物治理体系,开展调查监测,评估新污染物环境风险状况对微塑料等重点新污染物制定针对性管控措施,提出“针对微塑料等国内外关注且环境检出率高的其他新污染物,制定管控措施”,我国的微塑料治理防控由此迈入新的阶段. 在微塑料污染的治理工作中,提供可靠的分析技术来检测、识别和量化环境中赋存的微塑料,对促进微塑料环境污染治理和人体风险评估至关重要. 微塑料的检测主要从“形态和物理表征”和“定量和化学表征”两方面展开,前者从颜色、尺寸、形状、丰度等指标评价微塑料在环境介质中的赋存状态;后者从聚合物的组成和含量分析微塑料的物质组成. 物理和化学的综合检测,有利于全面评价微塑料在环境中的赋存、富集与迁移的特征.
在微塑料的物理和化学分析方法中,显微镜(目视)分析是重要的方法,具有简单、快速、成本低廉等优势,能对微塑料的物理性质进行有效分析,结合红外光谱和拉曼光谱等手段,可以对微塑料进行无损的物理化学综合分析;热分析和质谱分析可以进行微塑料聚合物类型的定性和定量分析. 近年来,随着微塑料的研究不断深入,遇到了分辨率难以满足较小(如1 μm以下)微塑料颗粒检测需要、大批量样品检测效率低和应对复杂样品检测难等方面的挑战. 为了克服以上挑战,研究人员从仪器开发、方法创新和对象扩展等角度展开工作,显著提升微塑料检测的空间分辨率和检测效率,并尝试从人体组织微塑料检测等方面直接评价微塑料暴露的人体健康效应. 本文系统综述了微塑料物理化学分析的主要手段,重点介绍应用的主要新方法,以及讨论存在的主要问题,并展望今后的应用前景和发展方向.
环境中微塑料检测方法的研究进展
Research progress on analytical methods for microplastics in the environment
-
摘要: 微塑料是指粒径小于5 mm的塑料碎片或颗粒,能够在大气、土壤和水体中迁移和富集,通过食物链累积,对人体健康产生严重危害. 为了更好地评估环境中微塑料的污染,本文详细综述了微塑料检测方法和技术手段的应用现状,包括显微镜分析、扫描电镜能谱分析、光谱分析、热分析和质谱分析等微塑料常用检测方法并对比了各方法的优缺点. 总结了近年来微塑料检测的新方法和新技术,重点讨论微塑料检测当前面临的技术挑战和未来的研究方向,对建立统一和标准化的微塑料分析方法进行展望, 为系统地和进一步地开展微塑料的污染评价及风险评估提供指导.Abstract: Microplastics are plastic fragments or particles with a size smaller than 5 mm, which can migrate and enrich in the atmosphere, soil and water bodies, and then accumulate through the food chain, posing a serious health risk to humans. For the purpose of assessment of the microplastic pollution in the environment, this paper presents a detailed review of the current application of microplastic detection methods and technological tools, i.e., photomicrography, scanning electron microscopy, spectrometer, thermal and mass spectrometry, and evaluates the advantages and disadvantages of each method. Summarized new methods and techniques for microplastics detection in recent years and discussed current technical challenges and future research directions for microplastics detection. The establishment of unified and microplastics standardized microplastics analytical methods is prospected and the possible guidance for the systematic and further evaluation and risk assessment of microplastic is provided.
-
Key words:
- microplastics /
- analysis methods /
- application prospect.
-
表 1 微塑料样品分离方法比较
Table 1. Comparison of microplastic sample separation methods
分离方法
Methods常用试剂
Reagents优点
Advantages缺点
Disadvantages参考文献
References筛分法
Sieving用于样品中微塑料的初步分离,可以在一定程度上简化微塑料的进一步分析检测 不适合分离<1mm的微塑料 [15] 密度分离法
Density separation饱和NaCl溶液
(密度1.2 g∙cm−3)成本低,易操作,对人体无毒 密度较小,对高密度微塑料颗粒的分离效果差 [1] 饱和NaI溶液
(密度1.8 g∙cm−3)对密度较高的微塑料分离效果好 有毒,成本高,污染环境 [16] ZnCl2溶液
(密度1.6 g∙cm−3)对密度较高的微塑料分离效果好 成本高,污染环境 [17] 油提取法
Oil extraction菜籽油、橄榄油、
蓖麻油成本低廉、效率高. 经过酒精洗涤清洗后不会干扰后续的仪器分析 清洗不完全残留的试剂可能导致塑料结构被破坏 [18] 泡沫浮选法
Foam flotation对低密度微塑料颗粒分离效果好 不适于分离高密度微塑料颗粒,且分离效果受微塑料粒度、形状等物理因素的影响 [19] 磁性分离法
Magnetic separation对大尺寸和小尺寸纳米塑料的分离效果较好 微塑料结构可能破坏,铁存在也可能干扰后续分析与表征 [19 − 20] 表 2 微塑料样品有机物消解方法比较
Table 2. Comparison of organic digestion methods for microplastic samples
消解法
Methods常用试剂
Reagents优点
Advantages缺点
Disadvantages参考文献
References酸消解法
Acid digestionHNO3 效率高,有效去除大分子有机杂质 某些类型聚合物如PA、PS和PET消解时被破坏 [21−22] HCl 效率低,使用较少 [19] HNO3-HClO4 可彻底分解有机物,缩短消解时间 耐酸性低的聚合物更容易降解 [23] 碱消解法
Alkali digestionNaOH、KOH 通过裂解蛋白质和脂肪等破坏生物组织,适用于生物样本消解;对微塑料结构的影响相对较弱 破坏特定种类微塑料的结构并使其变色;耗时 [23−24] 氧化法
Oxidative digestionH2O2 适用于于沉积物和土壤 处理富含有机物的样品会产生丰富的泡沫,使微塑料回收率偏低 [25] 芬顿(Fenton)试剂 效率高;有效破坏H2O2难以消解的有机成分和无机化合物 pH超过 5—6,会形成氢氧化铁沉淀,干扰后续分析和化学表征 [26] 酶消解法
Enzymatic digestion蛋白酶K、纤维素酶 不会对微塑料结构产生影响;对环境危害小 成本较高 [27] 工业酶 成本低廉 土壤中有机物的消解效果未知 [19] 表 3 微塑料检测方法比较
Table 3. Comparison of microplastics detection methods
检测方法
Methods原理
Principles尺寸或质量
检出限
Size or
quality LOQ前处理
Preparation获取信息
Information优点
Advantages缺点
Disadvantages适用情景
Application参考文献
References扫描电镜能谱联用
(SEM-EDS)二次电子和背散射电子成像,特征X射线元素分析 20 nm 脱水,
低真空无需
镀膜数量,尺寸,形状(表面特征),基于元素组成的有机无机物判断 空间分辨率高(约nm级),元素点、线、面半定量测定 成本高,耗时 物理形态分析要求较高微塑料分析 [65,69] 傅里叶变换红外光谱
(FTIR)特征红外吸收光谱,干涉图傅里叶变换 10 μm 无需特殊处理(复杂样品需
除杂)数量,聚合物
类型Mirco-FT-IR光谱分析实现样品可视化;能自动采集数据并生成图像;不破坏样品、预处理简单、不受荧光干扰、还可对滤膜进行自动分析 结果受H2O和CO2干扰;需要无尘环境;耗时;不透明/黑色的塑料微粒分析也较为困难 较多数量且微塑料尺寸较大的样品的物理和化学形态的综合分析 [70 − 72] 拉曼光谱 拉曼散射 1 μm 无需特殊处理(复杂样品需
除杂)数量,聚合物
类型采用显微Raman光谱时,无须投加试剂且不破坏样品,满足复杂样品的分析要求 受环境基底影响严重,检测环境样品时常有荧光干扰 尺寸较小不具荧光样品的分析 [69] 热脱附气相色谱质谱(TDS-GC/MS) 有机物萃取挥发,经色谱柱分离,使用质谱
检测无具体要求 涂覆吸附涂层的固相萃取搅拌棒搅拌吸附之后热脱附 微塑料类别,聚合物类型 多种成分定量分析 破坏性分析;实验条件要求高;进样量少 小批量样品精细测量化学组成的分析 [64] 热裂解气相色谱质谱
(Pyr-GC/MS)聚合物热稳定性 0.01—1 μg 采样器配热脱附系统 微塑料类别,聚合物类型 同时鉴定聚合物、表面附加物;无须投加其他溶剂;样品用量小;前处理简单,可直接进样 破坏性分析;实验条件要求高;存在误判风险;允许上机的样品量小 小批量样品精细测量化学组成的分析 [65,72,41] -
[1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838-838. [2] 杨婧婧, 徐笠, 陆安祥. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3): 383-396. doi: 10.7524/j.issn.0254-6108.2017071002 YANG J J, XU L, LU A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3): 383-396 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017071002
[3] ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment[J]. TrAC Trends in Analytical Chemistry, 2015, 65: 47-53. [4] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. [5] GUO X, LIN H, XU S, et al. Recent advances in spectroscopic techniques for the analysis of microplastics in food[J]. Journal of Agricultural and Food Chemistry, 2022, 70(5): 1410-1422. [6] ZHANG Q, XU E G, LI J, et al. A review of microplastics in table salt, drinking water, and air: direct human exposure[J]. Environmental Science & Technology, 2020, 54(7): 3740-3751. [7] SHIM W J, THOMPOSON R C. Microplastics in the Ocean[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 265-268. [8] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1): 14071. [9] ZHU D, CHEN Q L, AN X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology and Biochemistry, 2018, 116: 302-310. [10] FARRELL P, NELSON K. Trophic level transfer of microplastic: Mytilus edulis (L. ) to Carcinus maenas (L. )[J]. Environmental Pollution, 2013, 177: 1-3. [11] WATTS A J R, LEWIS C, GOODHEAD R M, et al. Uptake and retention of microplastics by the shore crab carcinus maenas[J]. Environmental Science & Technology, 2014, 48(15): 8823-8830. [12] CARPENTER E J, SMITH K L. Plastics on the Sargasso Sea surface[J]. Science, 1972, 175(4027): 1240-1241. [13] ARTHUR C , BAKER J , BAMFORD H. Proceedings of the second research workshop on microplastic debris, November 5−6, 2010[Z]. NOAA Technical Memorandum NOS-OR&R-39, 2011. [14] EUROPE P. Plastics–the facts 2020[J]. PlasticEurope, 2020, 1: 1-64. [15] 薛荔栋,张霖琳,于海斌,等. 土壤微塑料监测技术现状及方法标准化建议[J]. 中国环境监测, 2022, 38(5 ): 9-17. XUE L D, ZHANG L L, YU H B, et al. Research status of monitoring technologies for microplastics in soil and suggestions for method standardization[J]. Environmental Monitoring in China, 2022, 38(5): 9-17 (in Chinese).
[16] NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184: 161-169. [17] ZOBKOV M B, ESIUKOVA E E. Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments: Munich Plastic Sediment Separator efficiency[J]. Limnology and Oceanography: Methods, 2017, 15(11): 967-978. [18] CRICHTON E M, NOËL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments[J]. Analytical Methods, 2017, 9(9): 1419-1428. [19] 陈雅兰,孙可,韩兰芳,等. 土壤中微塑料的分离及检测方法研究进展[J]. 土壤学报, 2022, 59(2): 364-380. CHEN Y L, SUN K, HAN L F, et al. Separation, identification, and quantification methods in soil microplastics analysis: A review[J]. Acta Pedologica Sinica, 2022, 59(2): 364-380 (in Chinese).
[20] GRBIC J, NGUYEN B, GUO E, et al. Magnetic extraction of microplastics from environmental samples[J]. Environmental Science & Technology Letters, 2019, 6(2): 68-72. [21] SCHEURER M, BIGALKE M. Microplastics in Swiss Floodplain Soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. [22] GAUQUIE J, DEVRIESE L, ROBBENS J, et al. A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris[J]. Chemosphere, 2015, 138: 348-356. [23] QIU Q, TAN Z, WANG J, et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment[J]. Estuarine, Coastal and Shelf Science, 2016, 176: 102-109. [24] DEHAUT A, CASSONE A L, FRÈRE L, et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization[J]. Environmental Pollution, 2016, 215: 223-233. [25] ZHAO S, DANLEY M, WARD J E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy[J]. Analytical Methods, 2017, 9(9): 1470-1478. [26] HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices[J]. Environmental Science & Technology, 2018, 52(13): 7409-7417. [27] COURTENE-JONES W, QUINN B, MURPHY F, et al. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics[J]. Analytical Methods, 2017, 9(9): 1437-1445. [28] ENFRIN M, DUMÉE L F, LEE J. Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions[J]. Water Research, 2019, 161: 621-638. [29] CORCORAN P L, BIESINGER M C, GRIFI M. Plastics and beaches: A degrading relationship[J]. Marine Pollution Bulletin, 2009, 58(1): 80-84. [30] BORN M P, BRÜLL C. From model to nature — A review on the transferability of marine (micro-) plastic fragmentation studies[J]. Science of the Total Environment, 2022, 811: 151389. [31] ALLEN N S, EDGE M, MOHAMMADIAN M, et al. Hydrolytic degradation of poly(ethylene terephthalate): Importance of chain scission versus crystallinity[J]. European Polymer Journal, 1991, 27(12): 1373-1378. [32] HANKE G, GALGANI F, WERNER S, et al. Guidance on monitoring of marine litter in European Seas[Z]. EUR Luxembourg (Luxembourg): Publications Office of the European Union, 2013. [33] ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1-2): 177-182. [34] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. [35] 姚浩. 环境中微塑料检测方法的研究进展[J]. 山西化工, 2022 42(2 ): 55-57. YAO H. Research progress on detection methods of micro plastics in environment[J]. Shanxi Chemical Industry, 2022, 42(2): 55-57 (in Chinese).
[36] 顾伟康, 杨国峰, 刘艺, 等. 环境介质中微塑料的处理与检测方法研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(1): 135-143. Treatment and detection methods of microplastics from environmental media: A review[J]. Journal of Civil and Environmental Engineering, 2020, 42(1): 135-143(in Chinese).
[37] 冉泰山,廖洪凯,龙健,等. 微塑料在土壤环境中的分离和检测方法研究进展[J]. 塑料科技, 2022, 50(7 ): 101-104. RAN T S, LIAO H K, LONG J, et al. Research progress on separation and detection methods of microplastics in soil environment[J]. Plastics Science and Technology, 2022, 50(7): 101-104 (in Chinese).
[38] AHMED M B, RAHMAN Md S, ALOM J, et al. Microplastic particles in the aquatic environment: A systematic review[J]. Science of The Total Environment, 2021, 775: 145793. [39] 王嘉嘉,王佩瑶,王成浩,等. 土壤中微塑料的检测及其对土壤生态环境的影响[J]. 塑料科技, 2022, 50(10 ): 108-112. WANG J J, WANG P Y, WANG C H, et al. Determination of microplastics in soil and its effects on soil ecosystem[J]. Plastics Science and Technology, 2022, 50(10): 108-112 (in Chinese).
[40] SILVA A B, BASTOS A S, JUSTINO C I L, et al. Microplastics in the environment: Challenges in analytical chemistry - a review[J]. Analytica Chimica Acta, 2018, 1017: 1-19. [41] IVLEVA N P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives[J]. Chemical Reviews, 2021, 121(19): 11886-11936. [42] DE FROND H, RUBINOVITZ R, ROCHMAN C M. μATR-FTIR spectral libraries of plastic particles (FLOPP and FLOPP-e) for the analysis of microplastics[J]. Analytical Chemistry, 2021, 93(48): 15878-15885. [43] GAGO J, GALGANI F, MAES T, et al. Microplastics in seawater: recommendations from the marine strategy framework directive implementation process[J]. Frontiers in Marine Science, 2016, 3: 219. [44] ELERT A M, BECKER R, DUEMICHEN E, et al. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters?[J]. Environmental Pollution, 2017, 231: 1256-1264. [45] MALLIKARJUNACHARI G, GHOSH P. Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques[J]. Polymer, 2016, 90: 53-66. [46] LÖDER M G J, GERDTS G. Methodology used for the detection and identification of microplastics—a critical appraisal[M]//BERGMANN M, GUTOW L, KLAGES M. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 201-227[2022-12-20]. [47] HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285. [48] TAGG A S, SAPP M, HARRISON J P, et al. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging[J]. Analytical Chemistry, 2015, 87(12): 6032-6040. [49] VIANELLO A, JENSEN R L, LIU L, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin[J]. Scientific Reports, 2019, 9(1): 8670. [50] KÄPPLER A, FISCHER D, OBERBECKMANN S, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8377-8391. [51] ANGER P M, VON DER ESCH E, BAUMANN T, et al. Raman microspectroscopy as a tool for microplastic particle analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 109: 214-226. [52] RIBEIRO-CLARO P, NOLASCO M M, ARAÚJO C. Characterization of microplastics by Raman spectroscopy[J]. Comprehensive Analytical Chemistry, 2017, 75: 119-151. [53] CABERNARD L, ROSCHER L, LORENZ C, et al. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2018, 52(22): 13279-13288. [54] IVLEVA N P, WIESHEU A C, NIESSNER R. Microplastic in aquatic ecosystems[J]. Angewandte Chemie International Edition, 2017, 56(7): 1720-1739. [55] LÖDER M G J, IMHOF H K, LADEHOFF M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14283-14292. [56] MÖLLER J N, LÖDER M G J, LAFORSCH C. Finding microplastics in soils: A review of analytical methods[J]. Environmental Science & Technology, 2020, 54(4): 2078-2090. [57] LI J, LIU H, PAUL CHEN J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137: 362-374. [58] MAJEWSKY M, BITTER H, EICHE E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC)[J]. Science of The Total Environment, 2016, 568: 507-511. [59] RODRÍGUEZ CHIALANZA M, SIERRA I, PÉREZ PARADA A, et al. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry[J]. Environmental Science and Pollution Research, 2018, 25(17): 16767-16775. [60] PEÑALVER R, ARROYO-MANZANARES N, LÓPEZ-GARCÍA I, et al. An overview of microplastics characterization by thermal analysis[J]. Chemosphere, 2020, 242: 125170. [61] DAVID J, STEINMETZ Z, KUČERÍK J, et al. Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry[J]. Analytical Chemistry, 2018, 90(15): 8793-8799. [62] DÜMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174: 572-584. doi: 10.1016/j.chemosphere.2017.02.010 [63] DÜMICHEN E, BARTHEL A K, BRAUN U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85: 451-457. [64] DÜMICHEN E, BRAUN U, SENZ R, et al. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry[J]. Journal of Chromatography A, 2014, 1354: 117-128. doi: 10.1016/j.chroma.2014.05.057 [65] FRIES E, DEKIFF J H, WILLMEYER J, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy[J]. Environmental Science: Processes & Impacts, 2013, 15(10): 1949. [66] LI C, GAO Y, HE S, et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry[J]. Environmental Science & Technology Letters, 2021, 8(8): 633-638. [67] AKAL N M K, KARAG Z S. Analytical pyrolysis of biomass using gas chromatography coupled to mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2014, 61: 11-16. doi: 10.1016/j.trac.2014.06.006 [68] ZHOU X , HAO L T, WANG H , et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography–mass spectrometry[J]. Analytical chemistry, 2018, 91(3): 1785-1790. [69] VAN CAUWENBERGHE L, VANREUSEL A, MEES J, et al. Microplastic pollution in deep-sea sediments[J]. Environmental Pollution, 2013, 182: 495-499. doi: 10.1016/j.envpol.2013.08.013 [70] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175-9179. [71] CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian coast[J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204. [72] DEKIFF J H, REMY D, KLASMEIER J, et al. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 2014, 186: 248-256. [73] KÄPPLER A, FISCHER M, SCHOLZ-BÖTTCHER B M, et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical and Bioanalytical Chemistry, 2018, 410(21): 5313-5327. [74] HERMABESSIERE L, HIMBER C, BORICAUD B, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6663-6676. [75] TER HALLE A, LADIRAT L, GENDRE X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11): 5668-5675. [76] DONG M, ZHANG Q, XING X, et al. Raman spectra and surface changes of microplastics weathered under natural environments[J]. Science of The Total Environment, 2020, 739: 139990. doi: 10.1016/j.scitotenv.2020.139990 [77] KARAMI A, GOLIESKARDI A, CHOO C K, et al. Microplastic and mesoplastic contamination in canned sardines and sprats[J]. Science of the Total Environment, 2018, 612: 1380-1386. doi: 10.1016/j.scitotenv.2017.09.005 [78] SARAU G, KLING L, OSSMANN B E, et al. Correlative microscopy and spectroscopy workflow for microplastics[J]. Applied Spectroscopy, 2020, 74(9): 1155-1160. [79] KUROUSKI D, DAZZI A, ZENOBI R, et al. Infrared and Raman chemical imaging and spectroscopy at the nanoscale[J]. Chemical Society Reviews, 2020, 49(11): 3315-3347. [80] DAZZI A, PRATER C B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 2017, 117(7): 5146-5173. [81] MEYNS M, PRIMPKE S, GERDTS G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging[J]. Analytical Methods, 2019, 11(40): 5195-5202. [82] KUROUSKI D, VAN DUYNE R P. In Situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS)[J]. Analytical Chemistry, 2015, 87(5): 2901-2906. [83] LEE H, LEE D Y, KANG M G, et al. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging[J]. Nanophotonics, 2020, 9(10): 3089-3110. [84] XUE Q, WANG N, YANG H, et al. Detection of microplastics based on spatial heterodyne Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 283: 121712. [85] FANG T, SHANG W, LIU C, et al. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers[J]. Analytical Chemistry, 2019, 91(15): 9932-9939. [86] ZHAO P, ZHAO Y, CUI L, et al. Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles[J]. Science of The Total Environment, 2021, 775: 145846. [87] SU Y, HU X, TANG H, et al. Steam disinfection releases micro (nano) plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy[J]. Nature Nanotechnology, 2022, 17(1): 76-85. doi: 10.1038/s41565-021-00998-x [88] FELTS J R, KJOLLER K, LO M, et al. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication[J]. ACS Nano, 2012, 6(9): 8015-8021. [89] HERMANN R J, GORDON M J. Nanoscale optical microscopy and spectroscopy using near-field probes[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9(1): 365-387. [90] BREHM M, TAUBNER T, HILLENBRAND R, et al. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution[J]. Nano Letters, 2006, 6(7): 1307-1310. [91] SCHLÜCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie International Edition, 2014, 53(19): 4756-4795. [92] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3391-3395. [93] LV L, HE L, JIANG S, et al. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments[J]. Science of The Total Environment, 2020, 728: 138449. [94] VERMA P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances[J]. Chemical Reviews, 2017, 117(9): 6447-6466. [95] CHEN C, HAYAZAWA N, KAWATA S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient[J]. Nature Communications, 2014, 5(1): 3312. [96] ISSAKA E, YAKUBU S, SULEMANA H, et al. Current status of the direct detection of microplastics in environments and implications for toxicological effects[J]. Chemical Engineering Journal Advances, 2023, 14: 100449. [97] GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers for small microplastics and nanoplastics identification in seawater[J]. Environmental Science & Technology, 2019, 53(15): 9003-9013. [98] SCHWAFERTS C, SOGNE V, WELZ R, et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers[J]. Analytical Chemistry, 2020, 92(8): 5813-5820. [99] ZHANG D, LI C, ZHANG C, et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution[J]. Science Advances, 2016, 2(9): e1600521. doi: 10.1126/sciadv.1600521 [100] KLEMENTIEVA O, SANDT C, MARTINSSON I, et al. Super‐resolution infrared imaging of polymorphic amyloid aggregates directly in neurons[J]. Advanced Science, 2020, 7(6): 1903004. doi: 10.1002/advs.201903004 [101] LO M, MARCOTT C, KANSIZ M, et al. Sub-micron, non-contact, super-resolution infrared microspectroscopy for microelectronics contamination and failure analyses[C]//2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2020: 1-4. [102] FRÈRE L, PAUL-PONT I, MOREAU J, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter[J]. Marine Pollution Bulletin, 2016, 113(1-2): 461-468. doi: 10.1016/j.marpolbul.2016.10.051 [103] SHAN J, ZHAO J, LIU L, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238: 121-129. [104] PAUL A, WANDER L, BECKER R, et al. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil[J]. Environmental Science and Pollution Research, 2019, 26(8): 7364-7374. [105] PRIMPKE S, GODEJOHANN M, GERDTS G. Rapid identification and quantification of microplastics in the environment by quantum cascade laser-based hyperspectral infrared chemical imaging[J]. Environmental Science & Technology, 2020, 54(24): 15893-15903. [106] CORRADINI F, BARTHOLOMEUS H, HUERTA LWANGA E, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650: 922-932. [107] PEEZ N, JANISKA M C, IMHOF W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS)[J]. Analytical and Bioanalytical Chemistry, 2019, 411(4): 823-833. [108] COLSON B C, MICHEL A P M. Flow-through quantification of microplastics using impedance spectroscopy[J]. ACS Sensors, 2021, 6(1): 238-244. [109] ZHANG Y, WANG X, SHAN J, et al. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish[J]. Environmental Science & Technology, 2019, 53(9): 5151-5158. [110] TARAFDAR A, CHOI S H, KWON J H. Differential staining lowers the false positive detection in a novel volumetric measurement technique of microplastics[J]. Journal of Hazardous Materials, 2022, 432: 128755. [111] KEDZIERSKI M, FALCOU-PRÉFOL M, KERROS M E, et al. A machine learning algorithm for high throughput identification of FTIR spectra: Application on microplastics collected in the Mediterranean Sea[J]. Chemosphere, 2019, 234: 242-251. [112] BIANCO V, PIRONE D, MEMMOLO P, et al. Identification of microplastics based on the fractal properties of their holographic fingerprint[J]. ACS Photonics, 2021, 8(7): 2148-2157. [113] ZHANG Y, ZHANG M, FAN Y. Assessment of microplastics using microfluidic approach[J]. Environmental Geochemistry and Health, 2022[2022-12-31]. [114] KAILE N, LINDIVAT M, ELIO J, et al. Preliminary results from detection of microplastics in liquid samples using flow cytometry[J]. Frontiers in Marine Science, 2020, 7: 552688. [115] BACK H de M, VARGAS JUNIOR E C, ALARCON O E, et al. Training and evaluating machine learning algorithms for ocean microplastics classification through vibrational spectroscopy[J]. Chemosphere, 2022, 287: 131903. [116] LUO Y, ZHANG X, ZHANG Z, et al. Dual-principal component analysis of the Raman spectrum matrix to automatically identify and visualize microplastics and nanoplastics[J]. Analytical Chemistry, 2022, 94(7): 3150-3157. [117] HUFNAGL B, STIBI M, MARTIROSYAN H, et al. Computer-assisted analysis of microplastics in environmental samples based on μFTIR imaging in combination with machine learning[J]. Environmental Science & Technology Letters, 2022, 9(1): 90-95. [118] NG W, MINASNY B, MCBRATNEY A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy[J]. Science of The Total Environment, 2020, 702: 134723. [119] MORGADO V, PALMA C, BETTENCOURT DA SILVA R J N. Bottom-up evaluation of the uncertainty of the quantification of microplastics contamination in sediment samples[J]. Environmental Science & Technology, 2022, 56(15): 11080-11090. [120] ZHU X, NGUYEN B, YOU J B, et al. Identification of microfibers in the environment using multiple lines of evidence[J]. Environmental Science & Technology, 2019, 53(20): 11877-11887. [121] WRIGHT S L, LEVERMORE J M, KELLY F J. Raman spectral imaging for the detection of inhalable microplastics in ambient particulate matter samples[J]. Environmental Science & Technology, 2019, 53(15): 8947-8956. [122] DAVID J, WEISSMANNOVÁ H D, STEINMETZ Z, et al. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene terephthalate) microplastics in a model soil[J]. Chemosphere, 2019, 225: 810-819. [123] LI P, LAI Y, LI Q, et al. Total organic carbon as a quantitative index of micro- and nano-plastic pollution[J]. Analytical Chemistry, 2022, 94(2): 740-747. [124] SHI Y, YI L, DU G, et al. Visual characterization of microplastics in corn flour by near field molecular spectral imaging and data mining[J]. Science of the Total Environment, 2023, 862: 160714. [125] XIE L, GONG K, LIU Y, et al. Strategies and challenges of identifying nanoplastics in environment by surface-enhanced Raman spectroscopy[J]. Environmental Science & Technology, 2023, 51(1):25-43. [126] TER HALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the North Atlantic Subtropical Gyre[J]. Environmental Science & Technology, 2017, 51(23): 13689-13697. [127] SOBHANI Z, ZHANG X, GIBSON C, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm[J]. Water Research, 2020, 174: 115658. [128] BLANCHO F, DAVRANCHE M, HADRI H E, et al. Nanoplastics identification in complex environmental matrices: Strategies for Polystyrene and Polypropylene[J]. Environmental Science & Technology, 2021, 55(13): 8753-8759. [129] MATERIĆ D, KASPER-GIEBL A, KAU D, et al. Micro- and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range[J]. Environmental Science & Technology, 2020, 54(4): 2353-2359. [130] COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074. [131] ABBASI S, TURNER A. Human exposure to microplastics: A study in Iran[J]. Journal of Hazardous Materials, 2021, 403: 123799. doi: 10.1016/j.jhazmat.2020.123799 [132] ZHANG K, SHI H, PENG J, et al. Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management[J]. Science of the Total Environment, 2018, 630: 1641-1653. doi: 10.1016/j.scitotenv.2018.02.300 [133] KUTRALAM-MUNIASAMY G, SHRUTI V C, PÉREZ-GUEVARA F, et al. Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects[J]. Science of the Total Environment, 2023, 856: 159164. [134] SCHWABL P, K PPEL S, K NIGSHOFER P, et al. Detection of various microplastics in human stool: a prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. doi: 10.7326/M19-0618 [135] IBRAHIM Y S, TUAN ANUAR S, AZMI A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open, 2021, 5(1): 116-121. [136] AMATO-LOURENÇO L F, CARVALHO-OLIVEIRA R, JÚNIOR G R, et al. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials, 2021, 416: 126124. [137] ZHU L, ZHU J, ZUO R, et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy[J]. Science of The Total Environment, 2023, 856: 159060. [138] LESLIE H A, VAN VELZEN M J M, BRANDSMA S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199. [139] JENNER L C, ROTCHELL J M, BENNETT R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831: 154907. [140] ZHANG N, LI Y B, HE H R, et al. You are what you eat: Microplastics in the feces of young men living in Beijing[J]. Science of the Total Environment, 2021, 767: 144345. [141] YAN Z, LIU Y, ZHANG T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1): 414-421. [142] HUANG S, HUANG X, BI R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology, 2022, 56(4): 2476-2486.