-
抗生素被誉为20世纪现代医学史上最伟大的发现[1],抗生素的使用极大降低了人类因感染性疾病导致的死亡率及致残率. 但抗生素的滥用会导致病原菌对常规抗生素的耐药性增加,继而发生的耐药菌感染事件给人类敲响了警钟. 鉴于此,抗生素耐药性的增加已被美国疾病与预防控制中心和世界卫生组织确认为人类健康面临的最大挑战之一[2-3]. 如2011年5月中旬爆发于德国的“毒黄瓜”事件,该事件由于人类食用了肠出血性大肠杆菌污染的黄瓜所致. 中毒问题短期内蔓延到了欧洲至少9个国家,造成了3000余人感染,33人死亡,其中有470人出现肾功能衰竭等并发症. 引起此次疫情的菌株后被鉴定为O104 : H4血清型肠出血性大肠杆菌,该菌株为一种新型高传染性耐药致病菌株,其携带有氨基糖苷类、大环内酯类、磺胺类等抗生素耐药基因,导致抗生素治疗效果甚微.
抗生素不仅被广泛用于疾病治疗,因其具有预防疾病及刺激生长的作用,也长期被添加于饲料添加剂中应用于畜牧养殖业[4];还因其良好的保健功效而被添加至个人护理用品及医疗保健品中[5]. 由于抗生素药物或用品不能被人和动物完全代谢而多以原型和代谢产物被排出体外,其可经多种途径进入环境,并对水体、土壤、大气等环境中的微生物施加选择压力,诱导环境中土著微生物产生大量抗性基因,从而导致耐药菌的出现[6].
环境中耐药菌及耐药基因的出现给临床治疗耐药菌感染带来了巨大挑战,医院中常见耐药致病菌的相关研究已有很多,但环境中耐药菌的分布及传播研究甚少. 本文综述了耐药菌的来源和危害,总结了耐药菌的环境分布特征及其传播机制,概括了新型抗菌技术及其应用进展,最后展望了有关环境耐药菌研究的未来发展方向.
耐药菌的环境分布、传播及新型抗菌技术研究进展
A review on environmental distribution, spread, and anti-bacterial technology of antibiotic-resistant bacteria
-
摘要: 抗生素的广泛使用导致细菌耐药性增加、多重耐药菌菌群数量急剧增多,严重威胁着人类生命健康. 环境中耐药菌(ARB)及耐药基因(ARGs)的存在给临床治疗耐药菌感染带来了巨大挑战. 有关医院中常见耐药致病菌的研究已有很多,尚缺乏环境中耐药菌的分布、传播及新型耐药菌抗菌技术等的相关研究. 本文综述了耐药菌的环境分布特征及其传播机制,概述了新型抗菌技术及其应用,最后展望了有关环境耐药菌研究的未来发展方向.Abstract: The widespread use of antibiotics results in the increase of antibiotic-resistant bacteria (ARB) and their potential for drug resistant, which poses a serious threat to human health. The occurrence of ARB and antibiotic resistance genes (ARGs) in the environment presents a great challenge to the clinical treatment of antibiotic resistant bacteria infections. While great efforts have been made to study common drug-resistant pathogens in hospitals, there is still a lack of understanding regarding the distribution and spread of ARB in the environment. Furthermore, the development of new anti-bacterial technology is slow. This paper reviews the environmental distribution characteristics and spread mechanisms of ARB, summarizes the new anti-bacterial technology and its applications, and finally provides prospects for future research on ARB in the environment.
-
[1] WRIGHT G D. The antibiotic resistome: The nexus of chemical and genetic diversity [J]. Nature Reviews Microbiology, 2007, 5(3): 175-186. doi: 10.1038/nrmicro1614 [2] Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States[R]. USA, CDC, 2019 [3] World Health Organization. Antimicrobial resistance: a global report on surviellence[R]. WHO, 2014. [4] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026 [5] ORÚS P, GOMEZ-PEREZ L, LERANOZ S, et al. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products [J]. International Microbiology, 2015, 18(1): 51-59. [6] REDER-CHRIST K, BENDAS G. Biosensor applications in the field of antibiotic research: A review of recent developments [J]. Sensors, 2011, 11(10): 9450-9466. doi: 10.3390/s111009450 [7] HALL B G, BARLOW M. Evolution of the serine beta-lactamases: Past, present and future [J]. Drug Resistance Updates:Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2004, 7(2): 111-123. [8] D’COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient [J]. Nature, 2011, 477(7365): 457-461. doi: 10.1038/nature10388 [9] LARSEN J, RAISEN C L, BA X L, et al. Emergence of methicillin resistance predates the clinical use of antibiotics [J]. Nature, 2022, 602(7895): 135-141. doi: 10.1038/s41586-021-04265-w [10] TELLO A, AUSTIN B, TELFER T C. Selective pressure of antibiotic pollution on bacteria of importance to public health [J]. Environmental Health Perspectives, 2012, 120(8): 1100-1106. doi: 10.1289/ehp.1104650 [11] ASLAM B, CHAUDHRY T H, ARSHAD M I, et al. Distribution and genetic diversity of multi-drug-resistant Klebsiella pneumoniae at the human-animal-environment interface in Pakistan [J]. Frontiers in Microbiology, 2022, 13: 898248. doi: 10.3389/fmicb.2022.898248 [12] 全国细菌耐药监测网. 2020年全国细菌耐药监测报告[R]. 2021. China Antimicrobial Resistance Surveillance System. 2020 National antimicrobial resistance surveillance report[R]. 2021 (in Chinese).
[13] MURRAY C J, IKUTA K S, SHARARA F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis [J]. The Lancet, 2022, 399(10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0 [14] ZHOU M, YU S, HONG B, et al. Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case [J]. Environmental Pollution, 2021, 268: 115854. doi: 10.1016/j.envpol.2020.115854 [15] HOSSAIN A, HABIBULLAH-AL-MAMUN M, NAGANO I, et al. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking [J]. Environmental Science and Pollution Research, 2022, 29(8): 11054-11075. doi: 10.1007/s11356-021-17825-4 [16] 杨基峰, 应光国, 赵建亮, 等. 配套养殖体系中部分抗生素的污染特征 [J]. 环境化学, 2015, 34(1): 54-59. doi: 10.7524/j.issn.0254-6108.2015.01.2014042302 YANG J F, YING G G, ZHAO J L, et al. Pollution characteristics of antibiotics in complete sets of farming system [J]. Environmental Chemistry, 2015, 34(1): 54-59(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014042302
[17] GAO P P, MAO D Q, LUO Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment [J]. Water Research, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004 [18] BRUNTON L A, DESBOIS A P, GARZA M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems [J]. Science of the Total Environment, 2019, 687: 1344-1356. doi: 10.1016/j.scitotenv.2019.06.134 [19] DONE H Y, VENKATESAN A K, HALDEN R U. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? [J]. The AAPS Journal, 2015, 17(3): 513-524. doi: 10.1208/s12248-015-9722-z [20] BOOPATHY R. Presence of Methicillin Resistant Staphylococcus aureus (MRSA) in sewage treatment plant [J]. Bioresource Technology, 2017, 240: 144-148. doi: 10.1016/j.biortech.2017.02.093 [21] 崔红. 污水厂中多重耐药菌的筛选及耐药基因转移机制的研究[D]. 哈尔滨: 哈尔滨师范大学, 2022. CUI H. Screening of multidrug resistant bacteria and study on the mechanism of drug resistance gene transfer in sewage treatment plant[D]. Harbin: Harbin Normal University, 2022 (in Chinese).
[22] 刘海洋. 污水中典型抗生素、耐药菌及耐药基因的分布及其电催化降解研究[D]. 长春: 东北师范大学, 2020. LIU H Y. Study on distribution and electrocatalytic degradation of typical antibiotics, antibiotic resistant bacteria and resistantce genes in wastewater[D]. Changchun: Northeast Normal University, 2020 (in Chinese).
[23] BÖRJESSON S, MATUSSEK A, MELIN S, et al. Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: An uncharted threat? [J]. Journal of Applied Microbiology, 2010, 108(4): 1244-1251. doi: 10.1111/j.1365-2672.2009.04515.x [24] LOUDERMILK E M, KOTAY S M, BARRY K E, et al. Tracking Klebsiella pneumoniae carbapenemase gene as an indicator of antimicrobial resistance dissemination from a hospital to surface water via a municipal wastewater treatment plant [J]. Water Research, 2022, 213: 118151. doi: 10.1016/j.watres.2022.118151 [25] YONEDA I, ROZANAH U N, NISHIYAMA M, et al. Detection and genetic analysis of Escherichia coli from Tonle Sap Lake and its tributaries in Cambodia: Spatial distribution, seasonal variation, pathogenicity, and antimicrobial resistance [J]. Environmental Pollution, 2022, 315: 120406. doi: 10.1016/j.envpol.2022.120406 [26] 赵晓祥, 杨莲, 程晨, 等. 上海水体中抗生素抗性基因的分布特征 [J]. 安全与环境学报, 2018, 18(3): 1191-1197. doi: 10.13637/j.issn.1009-6094.2018.03.066 ZHAO X X, YANG L, CHENG C, et al. Distributive situation of the antibiotic resistance genes in the surface water bodies in Shanghai [J]. Journal of Safety and Environment, 2018, 18(3): 1191-1197(in Chinese). doi: 10.13637/j.issn.1009-6094.2018.03.066
[27] 柏晓辉, 代琳, 李根山, 等. 新安江流域水体抗生素耐药菌分布状况研究 [J]. 环境科学与技术, 2022, 45(8): 80-86,99. doi: 10.19672/j.cnki.1003-6504.0605.22.338 BAI X H, DAI L, LI G S, et al. Distribution characteristics of antibiotic-resistant bacteria in Xin’anjiang River Basin [J]. Environmental Science & Technology, 2022, 45(8): 80-86,99(in Chinese). doi: 10.19672/j.cnki.1003-6504.0605.22.338
[28] ANTHONY E T, OJEMAYE M O, OKOH O O, et al. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement [J]. Environmental Pollution, 2020, 263: 113791. doi: 10.1016/j.envpol.2019.113791 [29] 李娟, 魏源送, 陈倩. 北京地区畜禽养殖场周边蔬菜地生食蔬菜抗生素耐药基因(ARGs)的赋存特性 [J]. 环境化学, 2018, 37(4): 625-635. doi: 10.7524/j.issn.0254-6108.2017083004 LI J, WEI Y S, CHEN Q. Occurrence of antibiotic resistance genes (ARGs) carried by raw vegetables adjacent to the livestock and poultry feedlots in Beijing [J]. Environmental Chemistry, 2018, 37(4): 625-635(in Chinese). doi: 10.7524/j.issn.0254-6108.2017083004
[30] LOOFT T, JOHNSON T A, ALLEN H K, et al. In-feed antibiotic effects on the swine intestinal microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1691-1696. doi: 10.1073/pnas.1120238109 [31] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment [J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016 [32] REINTHALER F F, POSCH J, FEIERL G, et al. Antibiotic resistance of E. coli in sewage and sludge [J]. Water Research, 2003, 37(8): 1685-1690. doi: 10.1016/S0043-1354(02)00569-9 [33] RAHUBE T O, MARTI R, SCOTT A, et al. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest [J]. Applied and Environmental Microbiology, 2014, 80(22): 6898-6907. doi: 10.1128/AEM.02389-14 [34] UDIKOVIC-KOLIC N, WICHMANN F, BRODERICK N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15202-15207. doi: 10.1073/pnas.1409836111 [35] 韩秉君, 沈仕洲, 杨凤霞, 等. 不同施肥模式对洱海流域稻田土壤中耐药基因污染的影响 [J]. 农业环境科学学报, 2021, 40(11): 2503-2512. doi: 10.11654/jaes.2021-1044 HAN B J, SHEN S Z, YANG F X, et al. Effects of different fertilization modes on the pollution of antibiotic resistance genes in paddy soils of Erhai Lake Basin [J]. Journal of Agro-Environment Science, 2021, 40(11): 2503-2512(in Chinese). doi: 10.11654/jaes.2021-1044
[36] 王凤青. 海参养殖池耐药菌的分析及五株海洋新菌的鉴定[D]. 济南: 山东大学, 2016. WANG F Q. The analysis of drug-resistance bacteria of sea cucumber culture ponds and polyphasic taxonomy analysis of five novel marine bacteria strains[D]. Jinan: Shandong University, 2016 .
[37] 成旭. 水产养殖场沉积物中细菌群落和抗生素抗性基因的组成、丰度和消除研究[D]. 杨凌: 西北农林科技大学, 2022. CHENG X. Study on the composition, abundance, elimination of bacterial communities and antibiotic resistance genes from the aquaculture sediments[D]. Yangling: Northwest A & F University, 2022.
[38] LI L Y, WANG Q, BI W J, et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes [J]. Environmental Science & Technology, 2020, 54(7): 3900-3908. [39] KOZAJDA A, JEŻAK K, KAPSA A. Airborne Staphylococcus aureus in different environments-a review [J]. Environmental Science and Pollution Research, 2019, 26(34): 34741-34753. doi: 10.1007/s11356-019-06557-1 [40] GAO X L, SHAO M F, WANG Q, et al. Airborne microbial communities in the atmospheric environment of urban hospitals in China [J]. Journal of Hazardous Materials, 2018, 349: 10-17. doi: 10.1016/j.jhazmat.2018.01.043 [41] 邱婉月, 夏雨荷, 龚林, 等. 2018—2021年武汉市3家医院不同科室病房空气环境中的耐药菌污染 [J]. 卫生研究, 2022, 51(4): 617-623. doi: 10.19813/j.cnki.weishengyanjiu.2022.04.020 QIU W Y, XIA Y H, GONG L, et al. Antibiotic-resistant bacteria contamination in the air of different departments in hospital [J]. Journal of Hygiene Research, 2022, 51(4): 617-623(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2022.04.020
[42] FRIESE A, SCHULZ J, ZIMMERMANN K, et al. Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in Turkey and broiler barns and contamination of air and soil surfaces in their vicinity [J]. Applied and Environmental Microbiology, 2013, 79(8): 2759-2766. doi: 10.1128/AEM.03939-12 [43] MADSEN A M, MOSLEHI-JENABIAN S, ISLAM M Z, et al. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants [J]. Environmental Research, 2018, 160: 282-291. doi: 10.1016/j.envres.2017.10.001 [44] MOON K W, HUH E H, JEONG H C. Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea [J]. Environmental Monitoring and Assessment, 2014, 186(4): 2111-2120. doi: 10.1007/s10661-013-3521-8 [45] Smith D J, Ravichandar J D, Jain S, et al. Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA aircraft bioaerosol collector (ABC) [J]. Frontiers in Microbiology, 2018, 9: 1752. doi: 10.3389/fmicb.2018.01752 [46] 李鹏. 机舱空气耐药基因及耐药细菌的污染特征研究[D]. 天津: 天津大学, 2018. LI P. Characteristics of antibiotic resistant genes and resistant bacteria in the air environment of cabin[D]. Tianjin: Tianjin University, 2018 .
[47] SHEN X X, JIN G Q, ZHAO Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment [J]. Science of the Total Environment, 2020, 711: 134626. doi: 10.1016/j.scitotenv.2019.134626 [48] MIRANDA C D, ZEMELMAN R. Antibiotic resistant bacteria in fish from the concepción bay, Chile [J]. Marine Pollution Bulletin, 2001, 42(11): 1096-1102. doi: 10.1016/S0025-326X(01)00093-5 [49] Al-BAHRY S N, MAHMOUD I Y, Al-BELUSHI K I A, et al. Coastal sewage discharge and its impact on fish with reference to antibiotic resistant enteric bacteria and enteric pathogens as bio-indicators of pollution [J]. Chemosphere, 2009, 77(11): 1534-1539. doi: 10.1016/j.chemosphere.2009.09.052 [50] 张健, 朱秋华, 聂长丽, 等. 辽宁部分地区海产品多药耐药菌污染情况调查[C]//中国食品科学技术学会第十七届年会摘要集. 西安, 2020: 78-79. ZHANG J, ZHU Q H, NIE C L, et al. Investigation on contamination of multi-drug resistant bacteria in seafood products in Liaoning Province[C] // Abstracts of the 17th Annual Meeting of the Chinese Institute of Food Science and Technology. Xi’an, 2020: 78-79 .
[51] WHITE D G, ZHAO S, SUDLER R, et al. The isolation of antibiotic-resistant salmonella from retail ground meats [J]. The New England Journal of Medicine, 2001, 345(16): 1147-1154. doi: 10.1056/NEJMoa010315 [52] GODZISZEWSKA J, POGORZELSKA-NOWICKA E, BRODOWSKA M, et al. Detection in raw cow’s milk of coliform bacteria - reservoir of antibiotic resistance [J]. LWT, 2018, 93: 634-640. doi: 10.1016/j.lwt.2018.04.019 [53] KRAHULCOVÁ M, CVERENKÁROVÁ K, OLEJNÍKOVÁ P, et al. Characterization of antibiotic resistant coliform bacteria and resistance genes isolated from samples of smoothie drinks and raw milk [J]. Foods, 2022, 11(9): 1324. doi: 10.3390/foods11091324 [54] 左扬, 李田, 胡秀花, 等. 奶牛牧场养殖环境中产ESBL耐药菌的流行特征 [J]. 畜牧兽医学报, 2022, 53(11): 4027-4034. ZUO Y, LI T, HU X H, et al. Epidemiological characteristics of ESBL- producing resistant bacteria in dairy farming environment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4027-4034(in Chinese).
[55] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365-367. doi: 10.1126/science.1159483 [56] CHEN Y, CHEN X, ZHENG S, et al. Serotypes, genotypes and antimicrobial resistance patterns of human diarrhoeagenic Escherichia coli isolates circulating in southeastern China [J]. Clinical Microbiology and Infection, 2014, 20(1): 52-58. doi: 10.1111/1469-0691.12188 [57] ZHU G B, WANG X M, YANG T, et al. Air pollution could drive global dissemination of antibiotic resistance genes [J]. The ISME Journal, 2021, 15(1): 270-281. doi: 10.1038/s41396-020-00780-2 [58] ABU-ASHOUR J, LEE H. Transport of bacteria on sloping soil surfaces by runoff [J]. Environmental Toxicology, 2000, 15(2): 149-153. doi: 10.1002/(SICI)1522-7278(2000)15:2<149::AID-TOX11>3.0.CO;2-O [59] LEE D, TERTULIANO M, HARRIS C, et al. Salmonella survival in soil and transfer onto produce via splash events [J]. Journal of Food Protection, 2019, 82(12): 2023-2037. [60] ABU-ASHOUR J, JOY D M, LEE H, et al. Transport of microorganisms through soil [J]. Water, Air, and Soil Pollution, 1994, 75(1): 141-158. [61] 张昱, 杨敏, 王春艳, 等. 生产过程中抗生素与抗药基因的排放特征、环境行为及控制 [J]. 环境化学, 2015, 34(1): 1-8. doi: 10.7524/j.issn.0254-6108.2015.01.2014111303 ZHANG Y, YANG M, WANG C Y, et al. Antibiotics, antibiotic resistance genes, pollutant discharge characteristics, horizontal transfer mechanism, pollution control technology [J]. Environmental Chemistry, 2015, 34(1): 1-8(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014111303
[62] KAPER J B, NATARO J P, MOBLEY H L T. Pathogenic Escherichia coli [J]. Nature Reviews Microbiology, 2004, 2(2): 123-140. doi: 10.1038/nrmicro818 [63] XU H, CHEN Z Y, HUANG R Y, et al. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers [J]. Environmental Science & Technology, 2021, 55(15): 10462-10470. [64] ZHENG F, BI Q F, GILES M, et al. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization [J]. Environmental Science & Technology, 2021, 55(1): 423-432. [65] WANG H T, CHI Q Q, ZHU D, et al. Arsenic and sulfamethoxazole increase the incidence of antibiotic resistance genes in the gut of earthworm [J]. Environmental Science & Technology, 2019, 53(17): 10445-10453. [66] COLLIS R M, BIGGS P J, BURGESS S A, et al. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments [J]. Frontiers in Microbiology, 2022, 13: 960748. doi: 10.3389/fmicb.2022.960748 [67] BOEV C, KISS E. Hospital-acquired infections: Current trends and prevention [J]. Critical Care Nursing Clinics of North America, 2017, 29(1): 51-65. doi: 10.1016/j.cnc.2016.09.012 [68] KOLLEF M H, TORRES A, SHORR A F, et al. Nosocomial infection [J]. Critical Care Medicine, 2021, 49(2): 169-187. doi: 10.1097/CCM.0000000000004783 [69] AGABA P, TUMUKUNDE J, TINDIMWEBWA J V B, et al. Nosocomial bacterial infections and their antimicrobial susceptibility patterns among patients in Ugandan intensive care units: A cross sectional study [J]. BMC Research Notes, 2017, 10(1): 349. doi: 10.1186/s13104-017-2695-5 [70] GRISARU-SOEN G, SWEED Y, LERNER-GEVA L, et al. Nosocomial bloodstream infections in a pediatric intensive care unit: 3-year survey [J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2007, 13(6): CR251-CR257. [71] World Health Organization. World health statistics overview 2019: monitoring health for the SDGs, sustainable development goals[R]. World Health Organization, 2019. [72] GRUNDMANN H, BÄRWOLFF S, TAMI A, et al. How many infections are caused by patient-to-patient transmission in intensive care units? [J]. Critical Care Medicine, 2005, 33(5): 946-951. doi: 10.1097/01.CCM.0000163223.26234.56 [73] McGRATH E J, ASMAR B I. Nosocomial infections and multidrug-resistant bacterial organisms in the pediatric intensive care unit [J]. The Indian Journal of Pediatrics, 2011, 78(2): 176-184. doi: 10.1007/s12098-010-0253-4 [74] CHENG K P, HE M, SHU Q, et al. Analysis of the risk factors for nosocomial bacterial infection in patients with COVID-19 in a tertiary hospital [J]. Risk Management and Healthcare Policy, 2020, 13: 2593-2599. doi: 10.2147/RMHP.S277963 [75] ZHANG Y Z, DU M M, JOHNSTON J M, et al. Incidence of healthcare-associated infections in a tertiary hospital in Beijing, China: Results from a real-time surveillance system [J]. Antimicrobial Resistance & Infection Control, 2019, 8(1): 145. [76] LEMMEN S W, HÄFNER H, ZOLLDANN D, et al. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment [J]. Journal of Hospital Infection, 2004, 56(3): 191-197. doi: 10.1016/j.jhin.2003.12.004 [77] BHALLA A, PULTZ N J, GRIES D M, et al. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients [J]. Infection Control and Hospital Epidemiology, 2004, 25(2): 164-167. doi: 10.1086/502369 [78] TSOLAKI V, MANTZARLIS K, MPAKALIS A, et al. Ceftazidime-avibactam to treat life-threatening infections by carbapenem-resistant pathogens in critically ill mechanically ventilated patients [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(3): e02320-e02319. [79] ZHENG G H, ZHANG J X, WANG B, et al. Ceftazidime-avibactam in combination with in vitro non-susceptible antimicrobials versus ceftazidime-avibactam in monotherapy in critically ill patients with carbapenem-resistant Klebsiella pneumoniae infection: A retrospective cohort study [J]. Infectious Diseases and Therapy, 2021, 10(3): 1699-1713. doi: 10.1007/s40121-021-00479-7 [80] VENA A, GIACOBBE D R, CASTALDO N, et al. Clinical experience with ceftazidime-avibactam for the treatment of infections due to multidrug-resistant gram-negative bacteria other than carbapenem-resistant Enterobacterales [J]. Antibiotics, 2020, 9(2): 71. doi: 10.3390/antibiotics9020071 [81] 国家药品监督管理局. 国家药监局批准康替唑胺片上市[EB/OL].[2021-06-21]. [82] LI J M, FENG S S, LIU X, et al. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria[J]. Frontiers in Pharmacology, 2022, 13: 837907. [83] TIWARI V, TIWARI D, PATEL V, et al. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii [J]. Microbial Pathogenesis, 2017, 110: 345-351. doi: 10.1016/j.micpath.2017.07.013 [84] LIN T H, HUANG S H, WU C C, et al. Inhibition of Klebsiella pneumoniae growth and capsular polysaccharide biosynthesis by fructus mume [J]. Evidence- Based Complementary and Alternative Medicine:ECAM, 2013, 2013: 621701. [85] JI F, WANG C, WANG H M, et al. Tetrabromobisphenol A (TBBPA) exhibits specific antimicrobial activity against Gram-positive bacteria without detectable resistance [J]. Chemical Communications, 2017, 53(25): 3512-3515. doi: 10.1039/C7CC00613F [86] CHEN B L, JI F, WANG C, et al. Capture and elimination of Staphylococcus aureus based on Langmuir–Blodgett MnO2 nanowire monolayer promotes infected wound healing [J]. Journal of Materials Chemistry B, 2019, 7(26): 4198-4206. doi: 10.1039/C9TB00394K [87] QU X H, YANG H T, JIA B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomaterialia, 2020, 117: 400-417. doi: 10.1016/j.actbio.2020.09.041 [88] LI Y, LIU L N, WAN P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations[J]. Biomaterials, 2016, 106: 250-263. In vitro and in vivo evaluations [89] MONTEFUSCO-PEREIRA C V, FORMICOLA B, GOES A, et al. Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149: 12-20. doi: 10.1016/j.ejpb.2020.01.013 [90] PENG H B, XIE B B, YANG X H, et al. Pillar[5]arene-based, dual pH and enzyme responsive supramolecular vesicles for targeted antibiotic delivery against intracellular MRSA [J]. Chemical Communications, 2020, 56(58): 8115-8118. doi: 10.1039/D0CC02522D [91] WNOROWSKA U, FIEDORUK K, PIKTEL E, et al. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications [J]. Journal of Nanobiotechnology, 2020, 18(1): 3. doi: 10.1186/s12951-019-0566-z [92] LU N, WANG L Q, LV M, et al. Graphene-based nanomaterials in biosystems [J]. Nano Research, 2019, 12(2): 247-264. doi: 10.1007/s12274-018-2209-3 [93] TORRES-MENDIETA R, NGUYEN N H A, GUADAGNINI A, et al. Growth suppression of bacteria by biofilm deterioration using silver nanoparticles with magnetic doping [J]. Nanoscale, 2022, 14(48): 18143-18156. doi: 10.1039/D2NR03902H [94] TU Y S, LI P, SUN J J, et al. Remarkable antibacterial activity of reduced graphene oxide functionalized by copper ions [J]. Advanced Functional Materials, 2021, 31(13): 2008018. doi: 10.1002/adfm.202008018 [95] 梁思思, 李珺峤, 石磊, 等. 多重PCR法检测与分析鱼塘生态系统大肠杆菌的耐药基因与整合子 [J]. 食品工业科技, 2012, 33(23): 202-205,210. doi: 10.13386/j.issn1002-0306.2012.23.001 LIANG S S, LI J Q, SHI L, et al. Detection and analysis of antibiotic resistance genes and integron of Escherichia coli isolated from fish pond ecological constellation by mutiplex PCR [J]. Science and Technology of Food Industry, 2012, 33(23): 202-205,210(in Chinese). doi: 10.13386/j.issn1002-0306.2012.23.001
[96] 张博. 城市污水中肠杆菌的抗生素耐药性和多种耐药基因的检测[D]. 哈尔滨: 东北农业大学, 2013. ZHANG B. Detection of antibiotic resistance and various resistance genes in Enterobacteriaceae isolated from the urban sewage[D]. Harbin: Northeast Agricultural University, 2013 (in Chinese).
[97] MUSSI M A, LIMANSKY A S, VIALE A M. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: Natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins [J]. Antimicrobial Agents and Chemotherapy, 2005, 49(4): 1432-1440. doi: 10.1128/AAC.49.4.1432-1440.2005 [98] PADILLA E, LLOBET E, DOMÉNECH-SÁNCHEZ A, et al. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence [J]. Antimicrobial Agents and Chemotherapy, 2010, 54(1): 177-183. doi: 10.1128/AAC.00715-09 [99] WOODFORD N, ELLINGTON M J. The emergence of antibiotic resistance by mutation [J]. Clinical Microbiology and Infection:the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2007, 13(1): 5-18. doi: 10.1111/j.1469-0691.2006.01492.x [100] ZHU L J, CHEN X Y, HOU P F. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii [J]. Journal of Clinical Laboratory Analysis, 2019, 33(8): e22976. [101] LEE A S, de LENCASTRE H, GARAU J, et al. Methicillin-resistant Staphylococcus aureus [J]. Nature Reviews Disease Primers, 2018, 4(1): 1-23. [102] CHRISTAKI E, MARCOU M, TOFARIDES A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence [J]. Journal of Molecular Evolution, 2020, 88(1): 26-40. doi: 10.1007/s00239-019-09914-3 [103] MUNITA J M, ARIAS C A. Mechanisms of antibiotic resistance[M]//Virulence Mechanisms of Bacterial Pathogens. Washington, DC, USA: ASM Press, 2016: 481-511. [104] BLAIR J M A, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance [J]. Nature Reviews Microbiology, 2015, 13(1): 42-51. doi: 10.1038/nrmicro3380 [105] KARLSSON H L, GUSTAFSSON J, CRONHOLM P, et al. Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size [J]. Toxicology Letters, 2009, 188(2): 112-118. doi: 10.1016/j.toxlet.2009.03.014