-
在石油开采、加工、运输和使用等环节,石油污染物会发生泄露和排放,造成环境污染问题. 石油污染物种类复杂,烷烃、环烷烃和芳香烃是含量最高的组分[1]. 芳香烃主要包括苯系物(benzene,ethylbenzene,toluene and xylene,BTEX)和多环芳烃(polycyclic aromatic hydrocarbons,PAHs),具有高毒性和环境持久性,危害人类健康和生态系统[2-3].
相较于物理和化学修复,生物修复更为环境友好,经济成本较低,而微生物可降解大多数脂肪族和芳香化合物,是最有效的生物修复方法[3-4]. 不同石油组分的生物可降解程度依次为:正构烷烃>支链烷烃>支链烯烃>低分子量正烷基芳烃>单环芳烃>环烷烃>多环芳烃>沥青质[5]. 目前,关于烷烃和芳香化合物微生物降解过程的研究最多. 但是,石油污染的微生物修复仍存在诸多问题和挑战. 首先,微生物生存能力受环境影响较大,实验室条件下降解效果良好的菌株在实际环境中的活性可能下降,或者环境中污染物的浓度不能诱导代谢基因的表达[6-7];其次,石油污染物组成复杂,多数微生物只能降解特定组分,很难实现多种石油烃组分的完全降解[7-8];另外,石油污染物的亲脂性使其生物可利用性低,制约微生物的吸收和利用;最后,外源菌的引入可能影响土壤微生态平衡,且可能发生基因的水平迁移,存在生态风险.
通过分子生物学手段改造微生物代谢通路是修复石油污染的重要发展方向,构建基因工程菌(genetically engineered microorganisms,GEMs)为提高微生物的存活率、增强降解能力以及减少微生物修复的环境影响提供了解决方法. 理论上,通过代谢调控可以设计出降解效率更高和环境适应能力更强的工程菌. 本文概述了微生物降解石油污染物的代谢通路和遗传调控机制,综述了石油污染物降解基因工程菌的主要改造策略和应用,并展望了基因工程菌在石油污染修复的研究和发展趋势.
基因工程菌在石油污染修复中的研究进展与前景
The application of genetically engineered bacteria in petroleum hydrocarbon pollution remediation: Progress and challenges
-
摘要: 构建基因工程菌(genetically engineered microorganisms,GEMs)是石油污染生物修复的重要发展方向. 目前,通过基因编辑、过表达和定向进化等手段改造微生物的石油污染物降解和调控途径,可以提高微生物的环境适应能力和污染物降解能力,用于石油污染物的生物降解和监测. 本文概述了石油污染物降解基因工程菌的主要构建策略,包括选择和改造宿主菌、改造与优化石油污染物关键酶和代谢通路、开发微生物全细胞传感器和构建基因工程菌的自毁程序. 此外,基因工程菌也可用于石油污染的酶修复、微生物菌群修复和细菌-植物联合修复. 随着系统生物学和合成生物学在降解微生物中的应用,基因工程菌在石油污染修复中展现出良好的研究和应用前景.Abstract: The construction of genetically engineered microorganisms (GEMs) is an important bioremediation strategy of petroleum hydrocarbon pollutants. To improve the environmental adaptability and degradation ability of microorganisms, gene editing, overexpression, directed evolution and other techniques have been applied to modify the microbial degradation pathways and regulation pathways involved in petroleum hydrocarbon degradation. Therefore, GEMs used for biodegradation and monitoring of petroleum hydrocarbons have been developed. In this study, the main construction strategies of GEMs used for the degradation of petroleum hydrocarbon pollutants were summarized, including the selection and modification of chassis organisms, the modification and optimization of key enzymes and metabolic pathways, the development of microbial biosensors and the construction of conditional-suicide containment system. GEMs also play a role in the remediation of petroleum hydrocarbon pollutants using pure enzymes, microbial consortium and plant-microbe remediation. With the application of system biology and synthetic biology in microorganisms for bioremediation, GEMs exhibit promising research and application prospects in the remediation of petroleum hydrocarbons.
-
表 1 构建的用于降解石油污染物的基因工程菌
Table 1. Genetically engineered microorganisms (GEMs) designed for the degradation of petroleum pollutants
编号
No.引入基因
Gene基因功能
Gene function基因来源
Origin of genes宿主微生物
Host bacteria基因工程菌
GEMs基因工程菌功能
GEM function参考文献
References1 alkB 编码烷烃单加
氧酶Gordonia sp. SoCg Streptomyces coelicolor M145 Streptomyces coelicolor
M145-AH以正十六烷为唯一的碳源,降解其生成1-十六醇 [34] 2 phdABCD 编码菲双加氧酶 Nocardioides sp. KP7 Escherichia coli BL21(DE3). — 转化菲生成顺-3,4-二羟基-3,4-二氢菲等 [35] 3 nidABD 环羟基化双加
氧酶Mycobacterium sp. PYR-1 Escherichia coli — 产生降解PAHs的环羟基化双加氧酶 [21] 4 goldfish CYP1A gene 编码细胞色素P4501A Carassius auratus Shewanella oneidensis — 高效表达细胞色素P450蛋白,其周质组分可降解苯并[a]芘 [36] 5 bphA3-bphA2c-bphA1c 编码水杨酸加
氧酶Sphingomonas yanoikuyae B1 Escherichia coli — 转化水杨酸酯生成邻苯二酚,或者转化甲基水杨酸生成甲基邻苯二酚 [37] 6 C7 编码邻苯二酚2,3-双加氧酶 GeneBank Pseudomonas sp. CGMCC2953 Pseudomonas sp. CGMCC2953-pK 具有更高的萘降解能力 [38] 7 nahH 编码邻苯二酚2,3-双加氧酶 GenBank Pseudomonas putida;
Escherichia coli Top10F— 对萘和芘的降解能力增加 [39-40] 8 xylE 编码邻苯二酚2,3-双加氧酶 Pseudomonas putida BNF1 Acinetobacter sp. BS3 Acinetobacter sp. BS3-C23O 可同时降解芳香化合物和正构烷烃 [41] 9 pimp1 编码锰依赖过氧化物酶 Peniophora incarnata KUC8836 Saccharomyces cerevisiae BY4741 — 在添加Tween 80后,蒽的降解量可达6.5% [42] 10 mnp1 编码锰依赖过氧化物酶 Phanerochaete chrysosporium Aspergillus niger Aspergillus niger SBC2-T3 17 d后可降解土壤中95%的菲(初始浓度:
400 mg·kg−1)[43] 11 laccase gene 编码漆酶 Trametes sanguineus Trichoderma atroviride Trichoderma atroviride Talcc3 更快地降解工业废水和培养基中的酚类物质 [44] 12 mnp3 编码锰依赖过氧化物酶 Cerrena unicolor BBP6 Pichia pastoris X33 — 24 h可降解80.2%的
芴和和90.6%的菲
(初始浓度:10 mg·L−1)[45] 13 pmoABCD和etnABCD 编码丙烯单加氧酶和乙烯单加
氧酶Mycobacterium chubuense NBB4 Mycobacterium smegmatis mc2155和Pseudomonas putida KT2440 — 可以高效表达丙烯单加氧酶和乙烯单加氧酶 [46] -
[1] 刘玉华, 王慧, 胡晓珂. 不动杆菌属(Acinetobacter)细菌降解石油烃的研究进展 [J]. 微生物学通报, 2016, 43(7): 1579-1589. LIU Y H, WANG H, HU X K. Recent advances in the biodegradation of hydrocarbons by Acinetobacter species [J]. Microbiology China, 2016, 43(7): 1579-1589(in Chinese).
[2] 陈婧, 栾天罡, 罗丽娟. 烷基化多环芳烃的细菌降解研究进展 [J]. 环境化学, 2023, 42(1): 1-14. doi: 10.1002/etc.5366 CHEN J, LUAN T G, LUO L J. Research progress on bacterial degradation of alkylated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2023, 42(1): 1-14(in Chinese). doi: 10.1002/etc.5366
[3] 钱林波, 李航宇, 陈梦舫. 高级氧化技术修复苯并[a]芘污染土壤研究进展 [J]. 环境化学, 2022, 41(10): 3205-3213. doi: 10.7524/j.issn.0254-6108.2021110203 QIAN L B, LI H Y, CHEN M F. Research progress on the remediation of benzo[a]pyrene contaminated soil by advanced oxidation technology [J]. Environmental Chemistry, 2022, 41(10): 3205-3213(in Chinese). doi: 10.7524/j.issn.0254-6108.2021110203
[4] 李沅蔚, 王传远, 邹艳梅, 等. 渤海表面沉积物中石油-重金属复合污染的生物修复 [J]. 环境化学, 2019, 38(1): 186-194. doi: 10.7524/j.issn.0254-6108.2018012902 LI Y W, WANG C Y, ZOU Y M, et al. Bioremediation of combined pollution of petroleum and heavy metal in the surface sediments of Bohai Sea [J]. Environmental Chemistry, 2019, 38(1): 186-194(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012902
[5] VAN HAMME J D, SINGH A, WARD O P. Recent advances in petroleum microbiology [J]. Microbiology and Molecular Biology Reviews, 2003, 67(4): 503-549. doi: 10.1128/MMBR.67.4.503-549.2003 [6] TIMMIS K N, PIEPER D H. Bacteria designed for bioremediation [J]. Trends in Biotechnology, 1999, 17(5): 201-204. doi: 10.1016/S0167-7799(98)01295-5 [7] XIANG L, LI G Q, WEN L, et al. Biodegradation of aromatic pollutants meets synthetic biology [J]. Synthetic and Systems Biotechnology, 2021, 6(3): 153-162. doi: 10.1016/j.synbio.2021.06.001 [8] ISMAIL N A, KASMURI N, HAMZAH N. Microbial bioremediation techniques for polycyclic aromatic hydrocarbon (PAHs)—a review [J]. Water, Air, & Soil Pollution, 2022, 233(4): 124. [9] Sakshi, HARITASH A K. A comprehensive review of metabolic and genomic aspects of PAH-degradation [J]. Archives of Microbiology, 2020, 202(8): 2033-2058. doi: 10.1007/s00203-020-01929-5 [10] 侯晓鹏, 李春华, 叶春, 等. 不同电子受体作用下微生物降解多环芳烃研究进展 [J]. 环境工程技术学报, 2016, 6(1): 78-84. HOU X P, LI C H, YE C, et al. Research progress of biodegradation of polycyclic aromatic hydrocarbons with amendment of different electron acceptors [J]. Journal of Environmental Engineering Technology, 2016, 6(1): 78-84(in Chinese).
[11] 谭文捷, 李宗良, 丁爱中, 等. 土壤和地下水中多环芳烃生物降解研究进展 [J]. 生态环境, 2007, 16(4): 1310-1317. TAN W J, LI Z L, DING A Z, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil and groundwater: A review [J]. Ecology and Environment, 2007, 16(4): 1310-1317(in Chinese).
[12] 陶雪琴, 党志, 卢桂宁, 等. 污染土壤中多环芳烃的微生物降解及其机理研究进展 [J]. 矿物岩石地球化学通报, 2003, 22(4): 356-360. doi: 10.3969/j.issn.1007-2802.2003.04.014 TAO X Q, DANG Z, LU G N, et al. Biodegradation mechanism of polycyclic aromatic hydrocarbons (PAHs) in soil: A review [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2003, 22(4): 356-360(in Chinese). doi: 10.3969/j.issn.1007-2802.2003.04.014
[13] JIANG Y, ZHANG Z, ZHANG X M. Co-biodegradation of Pyrene and other PAHs by the bacterium Acinetobacter johnsonii [J]. Ecotoxicology and Environmental Safety, 2018, 163: 465-470. doi: 10.1016/j.ecoenv.2018.07.065 [14] BRZESZCZ J, KASZYCKI P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility [J]. Biodegradation, 2018, 29(4): 359-407. doi: 10.1007/s10532-018-9837-x [15] ABBASIAN F, LOCKINGTON R, MEGHARAJ M, et al. A review on the genetics of aliphatic and aromatic hydrocarbon degradation [J]. Applied Biochemistry and Biotechnology, 2016, 178(2): 224-250. doi: 10.1007/s12010-015-1881-y [16] ABBASIAN F, LOCKINGTON R, MALLAVARAPU M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria [J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699. doi: 10.1007/s12010-015-1603-5 [17] van BEILEN J B, FUNHOFF E G. Alkane hydroxylases involved in microbial alkane degradation [J]. Applied Microbiology and Biotechnology, 2007, 74(1): 13-21. doi: 10.1007/s00253-006-0748-0 [18] KWEON O, KIM S J, HOLLAND R D, et al. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1 [J]. Journal of Bacteriology, 2011, 193(17): 4326-4337. doi: 10.1128/JB.00215-11 [19] KOTOKY R, OGAWA N, PANDEY P. The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons [J]. Microbiological Research, 2022, 262: 127087. doi: 10.1016/j.micres.2022.127087 [20] 马涛, 原文婷, 彭英, 等. 黄孢原毛平革菌对氯代蒽的生物降解及降解途径 [J]. 环境化学, 2019, 38(7): 1636-1644. doi: 10.7524/j.issn.0254-6108.2018091204 MA T, YUAN W T, PENG Y, et al. Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway [J]. Environmental Chemistry, 2019, 38(7): 1636-1644(in Chinese). doi: 10.7524/j.issn.0254-6108.2018091204
[21] KHAN A A, WANG R F, CAO W W, et al. Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1 [J]. Applied and Environmental Microbiology, 2001, 67(8): 3577-3585. doi: 10.1128/AEM.67.8.3577-3585.2001 [22] YANG Y, ZHANG Z W, LIU R X, et al. Research progress in bioremediation of petroleum pollution [J]. Environmental Science and Pollution Research International, 2021, 28(34): 46877-46893. doi: 10.1007/s11356-021-15310-6 [23] JAISWAL S, SHUKLA P. Alternative strategies for microbial remediation of pollutants via synthetic biology [J]. Frontiers in Microbiology, 2020, 11: 808. doi: 10.3389/fmicb.2020.00808 [24] ADAMS B L. The next generation of synthetic biology chassis: Moving synthetic biology from the laboratory to the field [J]. ACS Synthetic Biology, 2016, 5(12): 1328-1330. doi: 10.1021/acssynbio.6b00256 [25] TANG H Z, YU H, LI Q G, et al. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds [J]. Journal of Bacteriology, 2011, 193(23): 6789-6790. doi: 10.1128/JB.06201-11 [26] WANG W W, LI Q G, ZHANG L G, et al. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a ‘superstar’ for mineralization of PAHs and dioxin-like compounds [J]. Environmental Microbiology, 2021, 23(8): 4309-4325. doi: 10.1111/1462-2920.15613 [27] TANG Q, LU T, LIU S J. Developing a synthetic biology toolkit for Comamonas testosteroni, an emerging cellular chassis for bioremediation [J]. ACS Synthetic Biology, 2018, 7(7): 1753-1762. doi: 10.1021/acssynbio.7b00430 [28] KOLENC R J, INNISS W E, GLICK B R, et al. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium [J]. Applied and Environmental Microbiology, 1988, 54(3): 638-641. doi: 10.1128/aem.54.3.638-641.1988 [29] SIANI L, PAPA R, di DONATO A, et al. Recombinant expression of toluene o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine antarctic bacterium Pseudoalteromonas haloplanktis TAC125 [J]. Journal of Biotechnology, 2006, 126(3): 334-341. doi: 10.1016/j.jbiotec.2006.04.027 [30] PARRILLI E, PAPA R, TUTINO M L, et al. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds [J]. Bioengineered Bugs, 2010, 1(3): 213-216. doi: 10.4161/bbug.1.3.11439 [31] LANGE C C, WACKETT L P, MINTON K W, et al. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments [J]. Nature Biotechnology, 1998, 16(10): 929-933. doi: 10.1038/nbt1098-929 [32] BRIM H, OSBORNE J P, KOSTANDARITHES H M, et al. Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction[J]. Microbiology (Reading, England), 2006, 152(Pt 8): 2469-2477. [33] KHOSHKHOLGH SIMA N A, EBADI A, REIAHISAMANI N, et al. Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects [J]. Journal of Environmental Management, 2019, 250: 109476. doi: 10.1016/j.jenvman.2019.109476 [34] GALLO G, LO PICCOLO L, RENZONE G, et al. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane [J]. Applied Microbiology and Biotechnology, 2012, 94(5): 1289-1301. doi: 10.1007/s00253-012-4046-8 [35] SAITO A, IWABUCHI T, HARAYAMA S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7 [J]. Chemosphere, 1999, 38(6): 1331-1337. doi: 10.1016/S0045-6535(98)00534-7 [36] CHANG Z W, LU M, SHON K J, et al. Functional expression of Carassius auratus cytochrome P4501A in a novel Shewanella oneidensis expression system and application for the degradation of benzo[a]Pyrene [J]. Journal of Biotechnology, 2014, 179: 1-7. doi: 10.1016/j.jbiotec.2014.03.008 [37] CHO O, CHOI K Y, ZYLSTRA G J, et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation [J]. Biochemical and Biophysical Research Communications, 2005, 327(3): 656-662. doi: 10.1016/j.bbrc.2004.12.060 [38] CAO L, WANG Q, ZHANG J, et al. Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil [J]. World Journal of Microbiology & Biotechnology, 2012, 28(9): 2783-2790. [39] MARDANI G, MAHVI A H, HASHEMZADEH-CHALESHTORI M, et al. Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil [J]. Jundishapur Journal of Natural Pharmaceutical Products, 2017, 12(3(Supp): 1-11. [40] AHANKOUB M, MARDANI G, GHASEMI-DEHKORDI P, et al. Biodecomposition of phenanthrene and Pyrene by a genetically engineered Escherichia coli [J]. Recent Patents on Biotechnology, 2020, 14(2): 121-133. doi: 10.2174/1872208314666200128103513 [41] XIE Y, YU F, WANG Q, et al. Cloning of catechol 2, 3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil [J]. Indian Journal of Microbiology, 2014, 54(1): 59-64. doi: 10.1007/s12088-013-0411-2 [42] LEE A H, KANG C M, LEE Y M, et al. Heterologous expression of a new manganese-dependent peroxidase gene from Peniophora incarnata KUC8836 and its ability to remove anthracene in Saccharomyces cerevisiae [J]. Journal of Bioscience and Bioengineering, 2016, 122(6): 716-721. doi: 10.1016/j.jbiosc.2016.06.006 [43] CORTÉS-ESPINOSA D V, ABSALÓN Á E, SANCHEZ N, et al. Heterologous expression of manganese peroxidase in Aspergillus niger and its effect on phenanthrene removal from soil [J]. Journal of Molecular Microbiology and Biotechnology, 2011, 21(3/4): 120-129. [44] BALCÁZAR-LÓPEZ E, MÉNDEZ-LORENZO L H, BATISTA-GARCÍA R A, et al. Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride [J]. PLoS One, 2016, 11(2): e0147997. doi: 10.1371/journal.pone.0147997 [45] ZHANG H, ZHANG X Y, GENG A L. Expression of a novel manganese peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation [J]. Biochemical Engineering Journal, 2020, 153: 107402. doi: 10.1016/j.bej.2019.107402 [46] MCCARL V, SOMERVILLE M V, LY M A, et al. Heterologous expression of Mycobacterium alkene monooxygenases in gram-positive and gram-negative bacterial hosts [J]. Applied and Environmental Microbiology, 2018, 84(15): e00397-e00318. [47] ZHOU Y, WEI J S, SHAO N M, et al. Construction of a genetically engineered microorganism for phenanthrene biodegradation [J]. Journal of Basic Microbiology, 2013, 53(2): 188-194. doi: 10.1002/jobm.201100322 [48] WU Y C, TENG Y, LI Z G, et al. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil [J]. Soil Biology and Biochemistry, 2008, 40(3): 789-796. doi: 10.1016/j.soilbio.2007.10.013 [49] BULTER T, ALCALDE M, SIEBER V, et al. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution [J]. Applied and Environmental Microbiology, 2003, 69(2): 987-995. doi: 10.1128/AEM.69.2.987-995.2003 [50] ZUMÁRRAGA M, PLOU F J, GARCÍA-ARELLANO H, et al. Bioremediation of polycyclic aromatic hydrocarbons by fungal laccases engineered by directed evolution [J]. Biocatalysis and Biotransformation, 2007, 25(2/3/4): 219-228. [51] ROJO F, PIEPER D H, ENGESSER K H, et al. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics [J]. Science, 1987, 238(4832): 1395-1398. doi: 10.1126/science.3479842 [52] PIPKE R, WAGNER-DÖBLER I, TIMMIS K N, et al. Survival and function of a genetically engineered Pseudomonad in aquatic sediment microcosms [J]. Applied and Environmental Microbiology, 1992, 58(4): 1259-1265. doi: 10.1128/aem.58.4.1259-1265.1992 [53] URGUN-DEMIRTAS M, STARK B, PAGILLA K. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants [J]. Critical Reviews in Biotechnology, 2006, 26(3): 145-164. doi: 10.1080/07388550600842794 [54] CHUNG J W, WEBSTER D A, PAGILLA K R, et al. Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability [J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(1): 27-33. doi: 10.1038/sj.jim.7000156 [55] KIM Y, WEBSTER D A, STARK B C. Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into their chromosomes [J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(4): 148-154. doi: 10.1007/s10295-005-0215-4 [56] KAHRAMAN H, GECKIL H. Degradation of benzene, toluene and xylene by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene [J]. Engineering in Life Sciences, 2005, 5(4): 363-368. doi: 10.1002/elsc.200520088 [57] SHEN X H, ZHOU N Y, LIU S J. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: Another potential for applications for this bacterium? [J]. Applied Microbiology and Biotechnology, 2012, 95(1): 77-89. doi: 10.1007/s00253-012-4139-4 [58] LEE S Y, LE T H, CHANG S T, et al. Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum [J]. Current Microbiology, 2010, 61(6): 596-600. doi: 10.1007/s00284-010-9658-6 [59] NIE M Q, NIE H Y, CAO W, et al. Phenanthrene metabolites from a new polycyclic aromatic hydrocarbon-degrading bacterium Aeromonas salmonicida subsp. achromogenes strain NY4 [J]. Polycyclic Aromatic Compounds, 2016, 36(2): 132-151. doi: 10.1080/10406638.2014.957406 [60] LI J, YE B C. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid [J]. Bioresource Technology, 2021, 319: 124239. doi: 10.1016/j.biortech.2020.124239 [61] YONG Y C, ZHONG J J. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway [J]. Bioresource Technology, 2013, 136: 761-765. doi: 10.1016/j.biortech.2013.03.134 [62] YU Z L, HU Z Y, XU Q M, et al. The LuxI/LuxR-type quorum sensing system regulates degradation of polycyclic aromatic hydrocarbons via two mechanisms [J]. International Journal of Molecular Sciences, 2020, 21(15): 5548. doi: 10.3390/ijms21155548 [63] HUANG Y L, ZENG Y H, YU Z L, et al. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems - A potential broad application on bioremediation [J]. Bioresource Technology, 2013, 148: 311-316. doi: 10.1016/j.biortech.2013.08.155 [64] JIA X Q, HE Y, JIANG D W, et al. Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval [J]. Biochemical Engineering Journal, 2019, 148: 214-223. doi: 10.1016/j.bej.2019.05.010 [65] 徐希辉, 刘晓伟, 蒋建东. 微生物菌群强化修复有机污染物污染环境: 现状与挑战 [J]. 南京农业大学学报, 2020, 43(1): 10-17. doi: 10.7685/jnau.201907064 XU X H, LIU X W, JIANG J D. Enhanced bioremediation of organic pollutant contaminated environment by microbial consortia: Current situations and challenges [J]. Journal of Nanjing Agricultural University, 2020, 43(1): 10-17(in Chinese). doi: 10.7685/jnau.201907064
[66] WEYENS N, SCHELLINGEN K, BECKERS B, et al. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination [J]. Journal of Soils and Sediments, 2013, 13(1): 176-188. doi: 10.1007/s11368-012-0582-1 [67] ZAFRA G, ABSALÓN Á E, ANDUCHO-REYES M Á, et al. Construction of PAH-degrading mixed microbial consortia by induced selection in soil [J]. Chemosphere, 2017, 172: 120-126. doi: 10.1016/j.chemosphere.2016.12.038 [68] ZHANG G B, YANG X H, ZHAO Z H, et al. Artificial consortium of three E. coli BL21 strains with synergistic functional modules for complete phenanthrene degradation [J]. ACS Synthetic Biology, 2022, 11(1): 162-175. doi: 10.1021/acssynbio.1c00349 [69] 王红旗, 熊樱, 陈延君. 土壤中石油污染物微生物修复动力学和机理初探 [J]. 环境化学, 2008, 27(3): 339-344. doi: 10.3321/j.issn:0254-6108.2008.03.014 WANG H Q, XIONG Y, CHEN Y J. Study on the kinetics and mechanism of microbial remediation of petroleum contaminants in soil [J]. Environmental Chemistry, 2008, 27(3): 339-344(in Chinese). doi: 10.3321/j.issn:0254-6108.2008.03.014
[70] 强婧, 尹华, 彭辉, 等. 生物表面活性剂与蒽降解菌的协同降解效应 [J]. 环境化学, 2010, 29(1): 58-62. QIANG J, YIN H, PENG H, et al. Effect of biosurfactant and degrading strain on anthracene biodegradation [J]. Environmental Chemistry, 2010, 29(1): 58-62(in Chinese).
[71] 郭利果, 苏荣国, 梁生康, 等. 鼠李糖脂生物表面活性剂对多环芳烃的增溶作用 [J]. 环境化学, 2009, 28(4): 510-514. GUO L G, SU R G, LIANG S K, et al. Solubilization of polycyclic aromatic hydrocarbons by rhamnolipid biosurfactant [J]. Environmental Chemistry, 2009, 28(4): 510-514(in Chinese).
[72] QIN R L, XU T, JIA X Q. Engineering Pseudomonas putida to produce rhamnolipid biosurfactants for promoting phenanthrene biodegradation by a two-species microbial consortium [J]. Microbiology Spectrum, 2022, 10(4): e0091022. doi: 10.1128/spectrum.00910-22 [73] BARAC T, TAGHAVI S, BORREMANS B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants [J]. Nature Biotechnology, 2004, 22(5): 583-588. doi: 10.1038/nbt960 [74] GERMAINE K J, KEOGH E, RYAN D, et al. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation [J]. FEMS Microbiology Letters, 2009, 296(2): 226-234. doi: 10.1111/j.1574-6968.2009.01637.x [75] MORATTI C F, SCOTT C, COLEMAN N V. Synthetic biology approaches to hydrocarbon biosensors: A review [J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 804234. doi: 10.3389/fbioe.2021.804234 [76] 侯启会, 马安周, 庄绪亮, 等. 微生物全细胞传感器在重金属生物可利用度监测中的研究进展 [J]. 环境科学, 2013, 34(1): 347-356. HOU Q H, MA A Z, ZHUANG X L, et al. Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor [J]. Environmental Science, 2013, 34(1): 347-356(in Chinese).
[77] KING J M, DIGRAZIA P M, APPLEGATE B, et al. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation [J]. Science, 1990, 249(4970): 778-781. doi: 10.1126/science.249.4970.778 [78] RIPP S, NIVENS D E, AHN Y, et al. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control [J]. Environmental Science & Technology, 2000, 34(5): 846-853. [79] STICHER P, JASPERS M C, STEMMLER K, et al. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples [J]. Applied and Environmental Microbiology, 1997, 63(10): 4053-4060. doi: 10.1128/aem.63.10.4053-4060.1997 [80] HUANG W E, WANG H, ZHENG H J, et al. Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate [J]. Environmental Microbiology, 2005, 7(9): 1339-1348. doi: 10.1111/j.1462-5822.2005.00821.x [81] SUN Y J, ZHAO X H, ZHANG D Y, et al. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site [J]. Chemosphere, 2017, 186: 510-518. doi: 10.1016/j.chemosphere.2017.08.027 [82] WEI H, ZE-LING S, LE-LE C, et al. Specific detection of bioavailable phenanthrene and mercury by bacterium reporters in the red soil [J]. International Journal of Environmental Science and Technology, 2014, 11(3): 685-694. doi: 10.1007/s13762-013-0216-1 [83] HE W, HU Z H, YUAN S, et al. Bacterial bioreporter-based mercury and phenanthrene assessment in Yangtze River Delta soils of China [J]. Journal of Environmental Quality, 2018, 47(3): 562-570. doi: 10.2134/jeq2017.07.0286 [84] PATEL R, ZAVERI P, MUKHERJEE A, et al. Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109450. doi: 10.1016/j.ecoenv.2019.109450 [85] LEHTINEN T, SANTALA V, SANTALA S. Twin-layer biosensor for real-time monitoring of alkane metabolism [J]. FEMS Microbiology Letters, 2017, 364(6): fnx053. [86] RODRIGUES J L, RODRIGUES L R. Synthetic biology: perspectives in industrial biotechnology// Current developments in biotechnology and bioengineering: foundations of biotechnology and bioengineering[M]. Elsevier B. V. 2017. [87] 李琴, 伍一军. 基因工程微生物的环境监测及生物防御体系研究进展 [J]. 生物工程学报, 2008, 24(3): 355-362. LI Q, WU Y J. Progress of environmental monitoring and biological containment system on genetically engineered microorganisms [J]. Chinese Journal of Biotechnology, 2008, 24(3): 355-362(in Chinese).
[88] CONTRERAS A, MOLIN S, RAMOS J L. Conditional-suicide containment system for bacteria which mineralize aromatics [J]. Applied and Environmental Microbiology, 1991, 57(5): 1504-1508. doi: 10.1128/aem.57.5.1504-1508.1991 [89] RONCHEL M C, RAMOS J L. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation [J]. Applied and Environmental Microbiology, 2001, 67(6): 2649-2656. doi: 10.1128/AEM.67.6.2649-2656.2001 [90] RONCHEL M C, MOLINA L, WITTE A, et al. Characterization of cell Lysis in Pseudomonas putida induced upon expression of heterologous killing genes [J]. Applied and Environmental Microbiology, 1998, 64(12): 4904-4911. doi: 10.1128/AEM.64.12.4904-4911.1998 [91] SZAFRANSKI P, MELLO C M, SANO T, et al. A new approach for containment of microorganisms: Dual control of streptavidin expression by antisense RNA and the T7 transcription system [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(4): 1059-1063. doi: 10.1073/pnas.94.4.1059