-
化学工业的发展带来化学品数量的迅猛增加及产量的极大提升. 2002年至今,美国化学文摘数据库中收录的化学物质的数量从2000万迅速增加到了1.95亿[1],目前全球登记的用于生产和使用的化学品数量也超过了35万种[2]. 《全球化学品展望》第二期报告中指出,目前化学品的生产能力为每年23亿吨,预计到2030年将翻一番[3]. 大量化学品在工业及消费品中的使用导致其不断进入环境,形成潜在的环境污染物,威胁环境及人体健康. 一项发表在Lancet上的研究显示全球16%的过早死亡可能与环境污染有关[4],2019年仅由空气污染导致的过早死亡人数就超过了400万[5]. 过去几十年中,以药品及个人护理品(pharmaceuticals and personal care products, PPCPs)[6]、内分泌干扰物[7]、阻燃剂[8]以及全氟/多氟烷基化合物(per- and polyfluoroalkyl substances, PFASs)[9]等为代表的新污染物不断在众多环境介质中被检出,一些报道也指出这些新污染物可能引发多种不良健康效应,引起了广泛的国际关注.
全面认识环境中的污染物是进行环境健康风险评价及制定合理有效的化学品管控措施的前提. 然而,尽管科学家已经进行了长期的环境监测,但实际上人们对环境中潜在污染物却知之甚少. 这主要是由于:(1)对于商业化学品而言,尽管在一些国家和地区其生产使用需要进行登记,甚至需要通过相关监管机构的评估审批,但许多信息包括化学结构、产量、安全性等都是不公开的;加上相当一部分化学品或产品受专利保护,其组成配方、分子结构及合成途径等内容可能都属于保密范畴,主要化学成分及可能的副产物等信息难以获取;(2)区别于实验室合成,大规模的工业生产过程可能会由于生产条件的变化或受到周围环境的影响而产生更多的未知副产物;(3)相关产品及化学品在使用及进入环境后可能发生多种生物及非生物转化,形成未知代谢产物. 因而,对环境中大量潜在的环境污染物进行识别、鉴定以及定量是目前全球科学家和政府面临的巨大挑战.
长久以来,对污染物的监测分析都采用基于色谱-质谱(chromatography-mass spectrometry)联用技术的靶标分析(target analysis)方法. 该方法利用标准品建立分析方法,通过对提取方法及仪器测定参数进行优化,能够实现对特定污染物的高灵敏度(fg·g−1至pg·g−1)检测. 然而,随着大量新化学品不断流入环境并发生迁移转化,环境中实际存在的污染物的种类和数量迅速增加. 此外,大量新污染物的化学结构未知,没有标准品可供使用;对少数已知信息的污染物进行标准品的全获取不仅成本高昂,且往往存在严重的时间滞后. 因此,依靠标准品的常规靶标监测模式只能覆盖实际环境中的一部分污染物,对于全面认识及评估环境及人群的暴露风险来说远远不够.
得益于近年来高分辨质谱(high-resolution mass spectrometry, HRMS)的快速发展,基于色谱-高分辨质谱系统的非靶标分析(nontarget analysis, NTA)方法已逐渐成为环境污染物分析的重要手段. 与传统的靶标分析相比,NTA不再依赖标准品,通过高分辨率、高准确度的全扫描结合多种数据处理技术实现对大量化合物的同时检测分析,以定量已知污染物并识别鉴定未知污染物. 过去十几年,NTA技术在环境分析领域得到了快速发展及应用(表1),帮助科学家在多种环境介质和生物体内鉴定出了许多以前未知的污染物,极大提高了人们对环境中污染物的认识,对于污染物的早期发现及控制有重要意义. 本文回顾了过去十几年来NTA用于复杂基质中环境污染物识别和鉴定的成果,分别从样品前处理、仪器分析以及数据采集和处理三方面对不同研究方法和策略进行了汇总、分析和比较,讨论了各自的优劣及适用范围,以期为NTA技术的整体发展以及开展广泛的新污染物识别提供参考.
非靶标技术在新污染物识别中的应用
Recent advances in nontarget discovery of emerging pollutants in the environment
-
摘要: 受人类活动的影响,来自工农业生产和生活活动等方面的化学品不断进入环境,加之各类生物和非生物转化时有发生,导致环境中存在多种污染物及复杂的转化产物.全面认识样品中的污染物是进行环境健康风险评价的前提.然而,大量的未知结构、复杂的环境基质以及低环境赋存浓度都为厘清污染物暴露带来了挑战,亟需发展高灵敏度的未知污染物识别技术.非靶标分析(nontarget analysis,NTA)作为一种新的分析手段,可以在化合物信息未知的情况下对复杂基质中的有机物进行识别,有助于最大限度揭示环境样品中存在的污染物,为风险评价奠定基础.本文回顾了非靶标技术在新污染物识别中的应用,从样品前处理、数据采集和数据处理三方面对目前使用的不同方法及策略进行讨论,讨论了各方法的优劣及适用范围,并提出了当前存在的问题及未来发展方向.Abstract: Chemicals from industrial, agricultural, and domestic activities are constantly entering the environment due to anthropogenic influences. In addition, various biotic and abiotic transformations of chemicals further lead to the presence of a wide variety of pollutants and complex transformation products in the environment. A comprehensive understanding of contaminants in samples is a prerequisite for environmental health risk assessment. However, the large number of unknown structures, complex environmental matrices, and low environmental concentrations pose challenges to the clarification of pollutant exposure. A technology with high sensitivity for the identification of unknown contaminants is thus urgently needed. As an emerging analytical strategy, nontarget analysis (NTA) enables the identification of organic compounds in complex matrices where compound information is unknown. NTA will help to reveal pollutants in environmental samples to the greatest extent and provide the critical foundation for risk assessment. In this paper, we review the applications of NTA technology in the identification of emerging pollutants, discuss the advantages, disadvantages, and scope of application of different methods that have been used from three aspects including sample pretreatment, data acquisition, and data processing, and propose challenges and future directions for the development of NTA.
-
表 1 非靶标分析典型案例
Table 1. Typical cases of nontarget analysis
样品类型
Sample type污染物类别
Group of substances样品前处理
Sample preparation仪器设备
Instrumental technique(s)MS2扫描模式
MS2 acquisition mode参考文献
Reference环境液体样品 海水 多环芳烃等 DLLME GC-EI-MS — [10] 河水 有机污染物 SPE LC-QTOF-MS/MS DIA [11] 地表水 有机污染物 SPME GC-TOF-MS — [12] 有机污染物及转化产物 直接进样 LC-ESI-QTOF-MS/MS DDA [13] 极性污染物 SPE LC-ESI-QTOF-MS/MS — [14] 地下水 有机污染物 SPME GC-TOF-MS — [12] 真空辅助蒸发浓缩 LC-Orbitrap-MS/MS DDA [15] 极性污染物 SPE LC-ESI-QTOF-MS/MS — [14] 农药及其转化产物 真空辅助蒸发浓缩 LC-ESI-Q-Exactive Plus-MS/MS DDA [16] 废水 有机污染物 SPME GC-TOF-MS — [12] 极性污染物 SPE LC-ESI-QTOF-MS/MS — [14] DDA [17] 药物 SPE LC-Q-Exactive-MS/MS DDA [18] 药物及转化产物 SPE LC-ESI-QTOF-MS/MS DDA [19] PFASs SPE LC-ESI-QTOF-MS/MS DDA [20] 在线SPE LC-ESI-LTQ-Orbitrap-MS/MS ISF [21] I-PFAAs LLE LC-ESI-Q-Orbitrap-MS/MS DDA [22] 溴代阻燃剂转化产物 LLE LC-ESI-QTOF-MS/MS — [23] 臭氧化产物 SPE LC-ESI-Q-Exactive Plus-MS/MS DDA [24] 过滤后直接进样、
LLELC-QTOF-MS
SFC-HRMS— [25] 自来水 DBPs SPE LC-ESI-Q-Orbitrap-MS/MS t-MS2 [26] 饮用水 挥发性有机化合物 SPME GC-EI-MS — [27] 极性污染物 SPE LC-ESI-QTOF-MS/MS — [14] 有机污染物及转化产物 直接进样 LC-ESI-QTOF-MS/MS DDA [13] 垃圾渗滤液 PFASs — LC-Q-Exactive-MS/MS DDA、迭代DDA、AIF [28] 环境固体样品 土壤 卤代化合物等 PLE GC-EI-MS/MS
LC-ESI-Q-Exactive-MS/MS— [29] PFASs 固-液萃取 LC-LTQ-Orbitrap-MS/MS DIA [30] 沉积物 有机污染物 超声 LC-QTOF-MS/MS DIA [11] PLE GC×GC-EI-QTOF-MS — [31] LC-ESI-Q-Exactive-MS/MS DIA [32] LC-ESI/APPI-LTQ-Orbitrap-MS/MS — [33] 极性污染物 索氏提取 LC-QTOF-MS/MS — [34] 卤代化合物等 PLE GC-EI-MS/MS
LC-ESI-Q-Exactive-MS/MS— [29] 有机溴化物 PLE LC-APCI-Q-Exactive-MS/MS DIA [35] 溴代阻燃剂转化产物 索氏提取 LC-ESI-QTOF-MS/MS — [23] 大气颗粒物 多环芳烃 PLE APPI-FT-ICR-MS
GC×GC-TOF-MS— [36] 室内
粉尘有机污染物 超声 GC-EI-QTOF-MS
LC-QTOF-MS/MSAIF [37] 氯代磷酸三酯 超声 LC-ESI-Q-Exactive-MS/MS DDA、DIA [38] 生物样品 鱼肝脏 PFASs 固-液萃取 LC-ESI-Orbitrap-MS/MS ISF [39] 北极熊血清 PFASs等 搅拌棒吸附萃取 LC-ESI-Orbitrap-MS/MS ISF [40] -
[1] ESCHER B I, STAPLETON H M, SCHYMANSKI E L. Tracking complex mixtures of chemicals in our changing environment [J]. Science, 2020, 367(6476): 388-392. doi: 10.1126/science.aay6636 [2] WANG Z Y, WALKER G W, MUIR D C G, et al. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories [J]. Environmental Science & Technology, 2020, 54(5): 2575-2584. [3] UNEP. Global chemicals outlook II: From legacies to innovative solutions[EB/OL]. [2023-02-10]. https://www.unep.org/explore-topics/chemicals-waste/what-we-do/policy-and-governance/global-chemicals-outlook. [4] LANDRIGAN P, FULLER R, ACOSTA N, et al. The Lancet commission on pollution and health [J]. The Lancet, 2018, 391(10119): 462-512. doi: 10.1016/S0140-6736(17)32345-0 [5] WHO. Ambient (outdoor) air pollution[EB/OL]. [2023-02-10]. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. [6] HERNÁNDEZ F, IBÁÑEZ M, BADE R, et al. Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry [J]. TrAC Trends in Analytical Chemistry, 2014, 63: 140-157. doi: 10.1016/j.trac.2014.08.003 [7] ISMANTO A, HADIBARATA T, KRISTANTI R A, et al. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology [J]. Environmental Pollution, 2022, 302: 119061. doi: 10.1016/j.envpol.2022.119061 [8] PANTELAKI I, VOUTSA D. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment [J]. Science of the Total Environment, 2019, 649: 247-263. doi: 10.1016/j.scitotenv.2018.08.286 [9] NG C, COUSINS I T, DEWITT J C, et al. Addressing urgent questions for PFAS in the 21st century [J]. Environmental Science & Technology, 2021, 55(19): 12755-12765. [10] PEÑALVER R, ORTIZ A, ARROYO-MANZANARES N, et al. Non-targeted analysis by DLLME-GC-MS for the monitoring of pollutants in the Mar Menor lagoon [J]. Chemosphere, 2022, 286: 131588. doi: 10.1016/j.chemosphere.2021.131588 [11] CCANCCAPA-CARTAGENA A, PICO Y, ORTIZ X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean river basin [J]. The Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057 [12] HERNANDEZ F, PORTOLÉS T, PITARCH E, et al. Target and nontarget screening of organic micropollutants in water by solid-phase microextraction combined with gas chromatography/high-resolution time-of-flight mass spectrometry [J]. Analytical Chemistry, 2007, 79(24): 9494-9504. doi: 10.1021/ac071551b [13] OBERLEITNER D, SCHMID R, SCHULZ W, et al. Feature-based molecular networking for identification of organic micropollutants including metabolites by non-target analysis applied to riverbank filtration [J]. Analytical and Bioanalytical Chemistry, 2021, 413(21): 5291-5300. doi: 10.1007/s00216-021-03500-7 [14] MONTES R, AGUIRRE J, VIDAL X, et al. Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry [J]. Environmental Science & Technology, 2017, 51(11): 6250-6259. [15] KIEFER K, DU L T, SINGER H, et al. Identification of LC-HRMS nontarget signals in groundwater after source related prioritization [J]. Water Research, 2021, 196: 116994. doi: 10.1016/j.watres.2021.116994 [16] KIEFER K, MÜLLER A, SINGER H, et al. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS [J]. Water Research, 2019, 165: 114972. doi: 10.1016/j.watres.2019.114972 [17] GAGO-FERRERO P, SCHYMANSKI E L, BLETSOU A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS [J]. Environmental Science & Technology, 2015, 49(20): 12333-12341. [18] SINGER H P, WÖSSNER A E, MCARDELL C S, et al. Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling [J]. Environmental Science & Technology, 2016, 50(13): 6698-6707. [19] PSOMA A K, ROUSIS N I, GEORGANTZI E N, et al. An integrated approach to MS-based identification and risk assessment of pharmaceutical biotransformation in wastewater [J]. Science of the Total Environment, 2021, 770: 144677. doi: 10.1016/j.scitotenv.2020.144677 [20] WANG Y, YU N Y, ZHU X B, et al. Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park [J]. Environmental Science & Technology, 2018, 52(19): 11007-11016. [21] LIU Y N, PEREIRA A D S, MARTIN J W. Discovery of C5 – C17 poly- and perfluoroalkyl substances in water by in-line SPE-HPLC-Orbitrap with in-source fragmentation flagging [J]. Analytical Chemistry, 2015, 87(8): 4260-4268. doi: 10.1021/acs.analchem.5b00039 [22] TANG C M, ZHU Y Z, LIANG Y T, et al. First discovery of iodinated polyfluoroalkyl acids by nontarget mass-spectrometric analysis and iodine-specific screening algorithm [J]. Environmental Science & Technology, 2023, 57: 1378-1390. [23] MATSUKAMI H, HASHIMOTO S, SUZUKI G. Investigation of novel brominated triazine-based flame retardant (TDBP-TAZTO) and its transformation products emitted from fire-retarded textile manufacturing facility and its downstream sewage treatment plant [J]. Science of the Total Environment, 2021, 791: 148233. doi: 10.1016/j.scitotenv.2021.148233 [24] SCHOLLÉE J E, BOURGIN M, GUNTEN U V, et al. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments [J]. Water Research, 2018, 142: 267-278. doi: 10.1016/j.watres.2018.05.045 [25] SEIWERT B, NIHEMAITI M, BAUER C, et al. Ozonation products from trace organic chemicals in municipal wastewater and from metformin: Peering through the keyhole with supercritical fluid chromatography-mass spectrometry [J]. Water Research, 2021, 196: 117024. doi: 10.1016/j.watres.2021.117024 [26] TAO D Y, WANG R, SHI S, et al. The identification of halogenated disinfection by-products in tap water using liquid chromatography-high resolution mass spectrometry [J]. Science of the Total Environment, 2020, 740: 139888. doi: 10.1016/j.scitotenv.2020.139888 [27] YU M Y, YANG X Q, FAN R, et al. Non-target screening analysis of volatile organic compounds in drinking water by headspace-solid phase microextraction gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2020, 48(9): 1228-1235. doi: 10.1016/S1872-2040(20)60044-5 [28] KOELMEL J P, PAIGE M K, ARISTIZABAL-HENAO J J, et al. Toward comprehensive per- and polyfluoroalkyl substances annotation using FluoroMatch software and intelligent high-resolution tandem mass spectrometry acquisition [J]. Analytical Chemistry, 2020, 92(16): 11186-11194. doi: 10.1021/acs.analchem.0c01591 [29] CHIAIA-HERNÁNDEZ A C, SCHERINGER M, MÜLLER A, et al. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments [J]. Science of the Total Environment, 2020, 740: 140181. doi: 10.1016/j.scitotenv.2020.140181 [30] SÖRENGÅRD M, AHRENS L, ALYGIZAKIS N, et al. Non-target and suspect screening strategies for electrodialytic soil remediation evaluation: Assessing changes in the molecular fingerprints and per- and polyfluoroalkyl substances (PFASs) [J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104437. doi: 10.1016/j.jece.2020.104437 [31] VEENAAS C, BIGNERT A, LILJELIND P, et al. Nontarget screening and time-trend analysis of sewage sludge contaminants via two-dimensional gas chromatography-high resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(14): 7813-7822. [32] CHIAIA-HERNÁNDEZ A C, GÜNTHARDT B F, FREY M P, et al. Unravelling contaminants in the anthropocene using statistical analysis of liquid chromatography-high-resolution mass spectrometry nontarget screening data recorded in lake sediments [J]. Environmental Science & Technology, 2017, 51(21): 12547-12556. [33] CHIAIA-HERNANDEZ A C, KRAUSS M, HOLLENDER J. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry [J]. Environmental Science & Technology, 2013, 47(2): 976-986. [34] TERZIC S, AHEL M. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry [J]. Environmental Pollution, 2011, 159(2): 557-566. doi: 10.1016/j.envpol.2010.10.009 [35] PENG H, CHEN C L, CANTIN J, et al. Untargeted screening and distribution of organo-bromine compounds in sediments of Lake Michigan [J]. Environmental Science & Technology, 2016, 50(1): 321-330. [36] XU C, GAO L R, ZHENG M H, et al. Nontarget screening of polycyclic aromatic compounds in atmospheric particulate matter using ultrahigh resolution mass spectrometry and comprehensive two-dimensional gas chromatography [J]. Environmental Science & Technology, 2021, 55(1): 109-119. [37] MOSCHET C, ANUMOL T, LEW B M, et al. Household dust as a repository of chemical accumulation: New insights from a comprehensive high-resolution mass spectrometric study [J]. Environmental Science & Technology, 2018, 52(5): 2878-2887. [38] WANG L, KANG Q Y, JIA Y T, et al. Identification of three novel chloroalkyl organophosphate triesters in house dust using halogenation-guided nontarget screening combined with suspect screening [J]. Environmental Science & Technology, 2021, 55(4): 2482-2490. [39] LIU Y N, QIAN M L, MA X X, et al. Nontarget mass spectrometry reveals new perfluoroalkyl substances in fish from the Yangtze River and Tangxun Lake, China [J]. Environmental Science & Technology, 2018, 52(10): 5830-5840. [40] LIU Y N, RICHARDSON E S, DEROCHER A E, et al. Hundreds of unrecognized halogenated contaminants discovered in polar bear serum [J]. Angewandte Chemie International Edition, 2018, 57(50): 16401-16406. doi: 10.1002/anie.201809906 [41] BERIJANI S, ASSADI Y, ANBIA M, et al. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water [J]. Journal of Chromatography. A, 2006, 1123(1): 1-9. doi: 10.1016/j.chroma.2006.05.010 [42] FATTAHI N, ASSADI Y, HOSSEINI M R M, et al. Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection [J]. Journal of Chromatography A, 2007, 1157(1/2): 23-29. [43] REZAEE M, YAMINI Y, SHARIATI S, et al. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples [J]. Journal of Chromatography A, 2009, 1216(9): 1511-1514. doi: 10.1016/j.chroma.2008.12.091 [44] JONKERS T J H, MEIJER J, VLAANDEREN J J, et al. High-performance data processing workflow incorporating effect-directed analysis for feature prioritization in suspect and nontarget screening [J]. Environmental Science & Technology, 2022, 56(3): 1639-1651. [45] DANIELS K D, PARK M, HUANG Z Z, et al. A review of extraction methods for the analysis of pharmaceuticals in environmental waters [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2271-2299. doi: 10.1080/10643389.2019.1705723 [46] ZAJA R, TERZIĆ S, SENTA I, et al. Identification of P-glycoprotein inhibitors in contaminated freshwater sediments [J]. Environmental Science & Technology, 2013, 47(9): 4813-4821. [47] CORTÉJADE A, KISS A, CREN C, et al. Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures [J]. Talanta, 2016, 146: 694-706. doi: 10.1016/j.talanta.2015.06.038 [48] DÜRIG W, KINTZI A, GOLOVKO O, et al. New extraction method prior to screening of organic micropollutants in various biota matrices using liquid chromatography coupled to high-resolution time-of-flight mass spectrometry [J]. Talanta, 2020, 219: 121294. doi: 10.1016/j.talanta.2020.121294 [49] MUSATADI M, GONZÁLEZ-GAYA B, IRAZOLA M, et al. Focused ultrasound-based extraction for target analysis and suspect screening of organic xenobiotics in fish muscle [J]. Science of the Total Environment, 2020, 740: 139894. doi: 10.1016/j.scitotenv.2020.139894 [50] YANG D W, HAN J J, HALL D R, et al. Nontarget screening of per- and polyfluoroalkyl substances binding to human liver fatty acid binding protein [J]. Environmental Science & Technology, 2020, 54(9): 5676-5686. [51] ULRICH E M, SOBUS J R, GRULKE C M, et al. EPA’s non-targeted analysis collaborative trial (ENTACT): Genesis, design, and initial findings [J]. Analytical and Bioanalytical Chemistry, 2019, 411(4): 853-866. doi: 10.1007/s00216-018-1435-6 [52] AALIZADEH R, NIKOLOPOULOU V, ALYGIZAKIS N A, et al. First novel workflow for semiquantification of emerging contaminants in environmental samples analyzed by gas chromatography-atmospheric pressure chemical ionization-quadrupole time of flight-mass spectrometry [J]. Analytical Chemistry, 2022, 94(27): 9766-9774. doi: 10.1021/acs.analchem.2c01432 [53] SINGH R R, CHAO A, PHILLIPS K A, et al. Expanded coverage of non-targeted LC-HRMS using atmospheric pressure chemical ionization: A case study with ENTACT mixtures [J]. Analytical and Bioanalytical Chemistry, 2020, 412(20): 4931-4939. doi: 10.1007/s00216-020-02716-3 [54] PAPAZIAN S, D’AGOSTINO L A, SADIKTSIS I, et al. Nontarget mass spectrometry and in silico molecular characterization of air pollution from the Indian subcontinent [J]. Communications Earth & Environment, 2022, 3(1): 1-14. [55] HUANG Y, MOLDEN R, HU M Q, et al. Toward unbiased identification and comparative quantification of host cell protein impurities by automated iterative LC-MS/MS (HCP-AIMS) for therapeutic protein development [J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 200: 114069. doi: 10.1016/j.jpba.2021.114069 [56] BONNEFILLE B, ARPIN-PONT L, GOMEZ E, et al. Metabolic profiling identification of metabolites formed in Mediterranean mussels (Mytilus galloprovincialis) after diclofenac exposure [J]. Science of the Total Environment, 2017, 583: 257-268. doi: 10.1016/j.scitotenv.2017.01.063 [57] LARA-MARTÍN P A, CHIAIA-HERNÁNDEZ A C, BIEL-MAESO M, et al. Tracing urban wastewater contaminants into the Atlantic Ocean by nontarget screening [J]. Environmental Science & Technology, 2020, 54(7): 3996-4005. [58] HOHRENK L L, VOSOUGH M, SCHMIDT T C. Implementation of chemometric tools to improve data mining and prioritization in LC-HRMS for nontarget screening of organic micropollutants in complex water matrixes [J]. Analytical Chemistry, 2019, 91(14): 9213-9220. doi: 10.1021/acs.analchem.9b01984 [59] CARPENTER C M G, WONG L Y J, JOHNSON C A, et al. Fall creek monitoring station: Highly resolved temporal sampling to prioritize the identification of nontarget micropollutants in a small stream [J]. Environmental Science & Technology, 2019, 53(1): 77-87. [60] TAHA H M, AALIZADEH R, ALYGIZAKIS N, et al. The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry [J]. Environmental Sciences Europe, 2022, 34(1): 104. doi: 10.1186/s12302-022-00680-6 [61] LIN Y F, YANG J, FU Q, et al. Exploring the occurrence and temporal variation of ToxCast chemicals in fine particulate matter using suspect screening strategy [J]. Environmental Science & Technology, 2019, 53(10): 5687-5696. [62] LÉON A, CARIOU R, HUTINET S, et al. HaloSeeker 1.0: A user-friendly software to highlight halogenated chemicals in nontargeted high-resolution mass spectrometry data sets [J]. Analytical Chemistry, 2019, 91(5): 3500-3507. doi: 10.1021/acs.analchem.8b05103 [63] KIND T, FIEHN O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry [J]. BMC Bioinformatics, 2007, 8(1): 1-20. doi: 10.1186/1471-2105-8-1 [64] WANG S R, PERKINS M, MATTHEWS D A, et al. Coupling suspect and nontarget screening with mass balance modeling to characterize organic micropollutants in the Onondaga Lake-Three Rivers system [J]. Environmental Science & Technology, 2021, 55(22): 15215-15226. [65] MENGER F, BOSTRÖM G, JONSSON O, et al. Identification of pesticide transformation products in surface water using suspect screening combined with national monitoring data [J]. Environmental Science & Technology, 2021, 55(15): 10343-10353. [66] FERRANDO-CLIMENT L, GONZALEZ-OLMOS R, ANFRUNS A, et al. Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: Transformation products and toxicity assessment [J]. Chemosphere, 2017, 168: 284-292. doi: 10.1016/j.chemosphere.2016.10.057 [67] WANG F, LIIGAND J, TIAN S Y, et al. CFM-ID 4.0: More accurate ESI-MS/MS spectral prediction and compound identification [J]. Analytical Chemistry, 2021, 93(34): 11692-11700. doi: 10.1021/acs.analchem.1c01465 [68] ALLEN F, PON A, GREINER R, et al. Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification [J]. Analytical Chemistry, 2016, 88(15): 7689-7697. doi: 10.1021/acs.analchem.6b01622 [69] CELMA A, BIJLSMA L, LÓPEZ F J, et al. Development of a retention time interpolation scale (RTi) for liquid chromatography coupled to mass spectrometry in both positive and negative ionization modes [J]. Journal of Chromatography A, 2018, 1568: 101-107. doi: 10.1016/j.chroma.2018.07.030 [70] HU M, MÜLLER E, SCHYMANSKI E L, et al. Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS [J]. Analytical and Bioanalytical Chemistry, 2018, 410(7): 1931-1941. doi: 10.1007/s00216-018-0857-5 [71] AALIZADEH R, NIKA M C, THOMAIDIS N S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants [J]. Journal of Hazardous Materials, 2019, 363: 277-285. doi: 10.1016/j.jhazmat.2018.09.047 [72] WATROUS J, ROACH P, ALEXANDROV T, et al. Mass spectral molecular networking of living microbial colonies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): E1743-E1752. [73] NOTHIAS L F, PETRAS D, SCHMID R, et al. Feature-based molecular networking in the GNPS analysis environment [J]. Nature Methods, 2020, 17(9): 905-908. doi: 10.1038/s41592-020-0933-6 [74] SCHYMANSKI E L, JEON J, GULDE R, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence [J]. Environmental Science & Technology, 2014, 48(4): 2097-2098. [75] CHARBONNET J A, MCDONOUGH C A, XIAO F, et al. Communicating confidence of per- and polyfluoroalkyl substance identification via high-resolution mass spectrometry [J]. Environmental Science & Technology Letters, 2022, 9(6): 473-481. [76] KOELMEL J P, XIE H Y, PRICE E J, et al. An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry [J]. Exposome, 2022, 2(1): osac007. doi: 10.1093/exposome/osac007 [77] 国务院办公厅. 新污染物治理行动方案[EB/OL]. [2023-02-10]. http://www.gov.cn/zhengce/content/2022-05/24/content_5692059.htm. [78] 杨晓溪, 李姿慷, 郭云鹤, 等. 成组毒理学分析仪在污染物识别与毒性测试中的应用 [J]. 分析测试学报, 2022, 41(9): 1279-1285. YANG X X, LI Z K, GUO Y H, et al. Application of integrated toxicology analyzer in pollutants identification and toxicity analysis [J]. Journal of Instrumental Analysis, 2022, 41(9): 1279-1285(in Chinese).
[79] MA Q C, LIU Y N, YANG X X, et al. Effect-directed analysis for revealing aryl hydrocarbon receptor agonists in sediment samples from an electronic waste recycling town in China [J]. Environmental Pollution, 2022, 308: 119659. doi: 10.1016/j.envpol.2022.119659 [80] MA Q C, YANG X X, GUO Y H, et al. Effect-directed analysis of estrogenic chemicals in sediments from an electronic-waste recycling area [J]. Environmental Pollution, 2022, 306: 119369. doi: 10.1016/j.envpol.2022.119369 [81] TIAN Z Y, GOLD A, NAKAMURA J, et al. Nontarget analysis reveals a bacterial metabolite of Pyrene implicated in the genotoxicity of contaminated soil after bioremediation [J]. Environmental Science & Technology, 2017, 51(12): 7091-7100.