-
20世纪中叶以来,塑料因其质轻、价廉、耐用、防水和耐腐蚀等优质性能,被普遍应用于医疗、工农业、航空、建筑及日常生活中. 据调查,2018年全球产生塑料约3.59亿t[1],累计83亿t[2],预计到2050年塑料年产量将达到11.24亿t,累计330亿t[3]. 而我国是塑料的生产大国,据统计,2021年我国塑料产量累计为8004万t[4]. 塑料制品的生产和使用给人类生活带来极大的便利,但也给环境造成了很大的污染. 进入环境的塑料在一些外力作用下,会成为粒径更小的微塑料.
“微塑料”这一术语是英国学者Thompson于2004年首次提出的,并在海洋沉积物中发现了这种物质[5]. 目前,微塑料是指粒径<5 mm的塑料碎片和颗粒[6]. 根据其来源可分为工业直接制造的原生微塑料(如化妆品、洗护用品)和由大型塑料降解、破裂形成的次生微塑料[7]. 微塑料具有较小的体积和密度,化学性质稳定,可在环境中长久存在,在风、河流、洋流等作用下能够进行长距离的迁移,甚至可以到偏远地区以及极地冰川;同时,微塑料易吸附持久性有机物、重金属和抗生素等,被生物摄取后在食物链中累积,危害生态环境和人体健康,所以学者开始广泛关注微塑料的研究.
目前,对微塑料的研究主要集中在水体[8-13]、沉积物[14-18]和生物体[19-20]中,而对大气中微塑料的研究还很少. 2015年,Dris等[21]首次在巴黎市区的大气沉降物中发现了微塑料. 此后,研究者相继报道了伊朗德黑兰[22]、土耳其萨卡里亚[23]、英国伦敦[24]、日本草津[25]和美国加利福尼亚[26]等地微塑料的分布特征. 近年来,国内也相继研究了东莞[27]、烟台[28-29]、上海[30]、北京[31]、大连[32]、哈尔滨[33]和宜昌[34]等地的大气微塑料.
大气微塑料污染的研究主要集中在几个地区,对偏远地区的研究较少. 然而,在偏远地区开展大气微塑料的研究,识别大气微塑料的来源和迁移转化机制也是十分有必要的,如青藏高原虽然排放的大气污染物较少,污染物浓度相对较低,但对周边影响及变化极为敏感,且保护着我国的生态安全,是天然的生态保护屏障,其重要性不言而喻. 从大气微塑料特征、研究方法、毒理效应的研究进展等方面展开阐述,提出未来的研究方向,为保护生态环境安全提供依据.
大气中微塑料的研究进展
Research progress on microplastics in the atmosphere
-
摘要: 微塑料(microplastics,Mps)是一种可以在环境和有机体中积聚的新污染物,其粒径较小、稳定性较好、生物降解较难,会对生态环境和人类健康造成危害,因此引起了国内外的高度关注. 近些年,微塑料相继在不同介质中被检出,且数量持续增多,甚至在人口稀少的青藏高原也被检出. 文章梳理了大气微塑料的赋存特征、来源途径和毒理效应,介绍了目前大气中微塑料的采集方法和检测分析技术,最后在目前研究的基础上,对未来大气微塑料的研究做出展望.Abstract: Microplastics (MPS) are a new type of pollutant, which can accumulate continuously in the environment and organisms, and has the characteristics of small particle size, good stability and difficult biodegradation, which endangers the ecological environment and human health, Therefore they have attracted great attention at home and abroad. In recent years, microplastics have been detected in different media, and the number continues to increase, even in the sparsely populated Qinghai-Tibet Plateau. This paper sorts out the characteristics, source and toxicological effects of microplastics in the atmospheric environment, introduces the current collection methods and detection and analysis technologies of microplastics in the atmosphere, and finally makes an outlook for the future research of atmospheric microplastics on the basis of the current research.
-
Key words:
- atmospheric microplastics /
- features /
- analytical methods /
- ecological effects
-
表 1 大气微塑料的赋存特征
Table 1. Occurrence characteristics of atmospheric microplastics
采样地点
Sampling location尺寸
Size颜色
Color形状
Shape组分
Component丰度
Abundance文献
Literature中国烟台 <0.5 mm(72%)
0.5—1 mm(16%)
1—2 mm(9%)
2—3 mm(3%)
>3 mm(<1%)黑、白、红、透明 纤维(95.05%)
碎片(4.04%)
薄膜(0.73%)
发泡(0.18%)PET、PV(聚氯乙烯树脂)、PE、PS 130—624个·(m2 ·d)−1 [28] 中国东莞 <200 μm(7%)
200—700 μm(30%)
700—1200 μm(20%)
1200—1700 μm(17%)
1700—2700 μm(17%)
2700—5000 μm(9%)纤维(90.1%)
碎片(6.8%)
薄膜(2.9%)
泡沫(0.2%)PE、PP、PS、纤维素 23—47个·(m2 ·d)−1 [27] 中国上海 23—9555 μm 黑、红、黄、灰、棕、绿、透明 纤维(72.09%)
碎片(26.74%)
颗粒(1.16%)PET、PES(聚醚砜)、PE、PAN(聚丙烯腈) 0—4.18个·m−2 [30] 中国南海 340—1840 μm 黑、红、黄 纤维(73.9%)
碎片(26.1%)PP、PET、PEVA(聚乙烯-醋酸乙烯酯) 0—0.31×10−2个·m−3 [35] 中国珠江 348—1456 μm 黑、白、红、黄、棕 纤维 PET、PP、PA(聚酰胺) 3—7.7×10−2个·m−3 [35] 法国巴黎 100—500 μm(22%)
500—1000 μm(29%)
1000—5000 μm(49%)纤维(90%)
碎片(10%)29—280个·(m2 ·d)−1 [21] 法国巴黎 <200 μm(4.8%)
200—400 μm(18.7%)
400—600 μm(22.1%)
600—800 μm(14.1%)
800—1000 μm(11.7%)
1000—5000 μm(28.6%)纤维 PET、PA、纤维素 2—355个·(m2 ·d)−1 [36] 法国巴黎 50—4850 μm 纤维 PA、PET、PE、PP、纤维素 0.3—59.4个·m−3 [37] 伊朗德黑兰 <100 μm(6%)
100—250 μm(15%)
250—500 μm(34%)
500—1000 μm(20%)
1000—5000 μm(26%)黑(灰)、黄(橙)、蓝、红(粉)、绿、棕、透明(白) 纤维(33.8%)
颗粒(65.6%)
微珠(0.6%)2.4—20.5个·g−1 [22] 伊朗阿萨鲁耶 25—5000 μm 白(透明)、橙(黄)、红(粉)、蓝(绿)、黑(灰) 纤维、碎片、微球、薄膜 PA、尼龙 2.7—66.7个·g−1 [38] 德国汉堡 <63 μm(73.2%)
63—300 μm(22.7%)
>300 μm(4.1%)碎片(95%)
纤维(5%)PE、PET、PVA(聚乙烯醇)、EVAC(乙烯-乙酸乙烯酯共聚物) 136.5—512个·(m2 ·d)−1 [39] 日本草津 453—2347 μm 黑、灰、白(透明)、黄、棕、红、蓝、绿 碎片、薄膜、纤维、颗粒 PET、PS、PP、PE、PAK、PVS、EPC 0.4—3.6个·m−2 [25] 越南舰岗 261—1321 μm 黑、灰、白(透明)、黄、绿、红、棕 纤维(14.8%)
碎片(60.6%)
薄膜(12.3%)
颗粒(12.3%)PET、PS、PP、PE、PAK(聚酯醇酸树脂)、SBR(丁苯橡胶)、PU(聚氨酯) 6—33.4个·m−2 [25] 英国伦敦 20—2800 μm 纤维(92%) PAN、PET、PVC(聚氯乙烯)、PP、PA、PE、PS 12—925个·(m2 ·d)−1 [24] 西太平洋 16—2086 μm 纤维、碎片、颗粒 PET、PS、PE、EP(环氧树脂)、PES、PVC、PP、PAN 0—1.37个·m−3 [40] 东印度洋 59—988 μm 黑、蓝、黄 纤维(79.2%)
碎片(20.8%)PP、PET 0—0.8×10−2个·m−3 [41] 表 2 大气微塑料预处理方法汇总
Table 2. Summary of pretreatment methods for atmospheric microplastics
预处理方法
Preprocessing method优点
Advantages缺点
Disadvantages筛分过滤法 操作简单,可以快速实现微塑料尺寸的分级,不必对样品进行复杂处理 提纯度低,受筛网孔径限制,很难得到较小粒径 消解法 酸消解 快速、廉价、易操作 对一些样品消解效果不佳 碱消解 效果较好,聚合物受碱消解的影响较小 可能使塑料变色,沉积残留物
对光谱信号产生干扰氧化剂消解 价格便宜,成分简单,可有效消解有机质,且对微塑料颗粒影响较小 可能会漂白有色微塑料 酶消解 危害较小,一般不会对微塑料造成损害 价格昂贵,只适合少量样品的消解,所需时间也较长,且每种酶都需要最佳温度和pH值 密度分离法 NaCl 价廉易得、无毒有效 不能使沉积物中的高聚物全部脱离 NaI 能分离密度较大的微塑料样品 价格昂贵 ZnCl2 能分离密度较大的微塑料样品 对环境有危害 表 3 微塑料分析技术比较
Table 3. Comparison of microplastics analysis techniques
技术
Technology介绍
Introduce适用范围
Scope of application优点
Advantages缺点
Disadvantages目视法 通过肉眼来辨别微塑料 2—5 mm、有色塑料 简单、经济、便捷 容易出现误差 体视显微镜 通过形貌观察分析微塑料 50 μm—2 mm微塑料 简单、经济、便捷 容易出现误差 扫描电子显微镜 通过电子束与样品的相互作用,测量样品表面形态和元素 粒径>20 μm的微塑料 能精确检测样品表面形貌和元素 成本高 傅里叶变换红外光谱法 通过分析化学键、官能团的振动吸收,鉴别样品类型 粒径>20 μm、类型单一的微塑料 操作简单、无损鉴定、图谱库丰富 易受环境影响 拉曼光谱法 通过激光激活分子振动,测量分子结构 粒径在1—20 μm的微塑料 操作简单、无损鉴定、可以鉴别组分复杂、粒径小的微塑料 受环境基底影响严重,荧光干扰大,过程费时费力,结果受激发光波段选择影响 裂解气相色谱-质谱联用技术 通过高温加热使样品热裂解,经气相色谱分离后,由质谱分析检测 对尺寸无具体要求,应用范围广泛 分析速度快,样品用量少,可直接进样,可同时鉴定聚合物和塑料表面添加剂 破坏性分析,实验条件要求高,无法分析微塑料尺寸、颜色和数量 表 4 大气微塑料采集、预处理和分析方法
Table 4. Methods for collection, pretreatment and analysis of atmospheric microplastics
采样地点
Sampling
location采样方式
Sampling
mode采样时长
Sampling
time浓缩方法
Concentration
method消解方法
Digestion
method分离方法
Separation
method分析方法
Analysis
method文献
Literature法国巴黎 被动采样 7 d或30 d 石英纤维过滤器
(1.6 μm)体视显微镜 [21] 法国巴黎 被动采样 10 d 石英纤维过滤器
(1.6 μm)体视显微镜;FTIR [36] 中国东莞 被动采样 1个月 玻璃纤维过滤器
(1.0 μm)数字显微镜;反射-FTIR;SEM [27] 中国烟台 被动采样 115 d 不锈钢筛
(1 mm和5 mm)H2O2
(浓度为30%)体视显微镜;衰减全反射-FTIR [28] 英国诺丁汉 被动采样 30 d 筛网
(38 μm)体视显微镜;衰减全反射/反射-FTIR [83] 德国汉堡 被动采样 84 d 纤维素过滤器
(55 μm)NaClO
(浓度为6%—14%)荧光体视显微镜;拉曼光谱 [39] 法国比利牛斯山 被动采样 34 d 聚四氟乙烯滤膜
(0.45 μm)H2O2
(浓度为30%)ZnCl2
(密度为1.6 g·cm−3)体视显微镜;共聚焦显微镜;拉曼光谱 [43] 英国伦敦 被动采样 4 d 氧化铝膜滤膜
(0.2 μm)荧光体视显微镜;反射-FTIR [24] 法国巴黎 主动采样 4—7 h或
10—40 h石英纤维过滤器
(1.6 μm)ZnCl2
(密度为1.6 g·cm−3)体视显微镜;衰减全反射-FTIR [37] 中国上海 主动采样 1 h 玻璃纤维过滤器
(1.6 μm)体视显微镜;透射-FTIR [30] 中国上海 主动采样 1 min 玻璃纤维过滤器
(1.6 μm)体视显微镜;透射-FTIR [41] 西太平洋 主动采样 4—24 h 玻璃微纤维过滤器
(1.6 μm)体视显微镜;透射-FTIR [40] 伊朗阿萨鲁耶 主动采样 24 h 聚四氟乙烯滤膜
(2 μm)NaI
(密度为1.6 g·cm−3)荧光体视显微镜;SEM-EDS [38] 中国北京 主动采样 6—8 h 混合纤维素酯膜
(0.8 μm)SEM-EDS [31] 南海、东印度洋 主动采样 10—48 h 玻璃微纤维过滤器
(1.6 μm)体视显微镜;透射-FTIR [35] -
[1] Plastics Europe. An analysis of European plastics production, demand and waste data. Plastics—the facts 2019 [EB/OL]. [2021-04-10]. [2] DUIS K, COORS A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects [J]. Environmental Sciences Europe, 2016, 28(1): 1-25. doi: 10.1186/s12302-015-0068-z [3] SHARMA M D, ELANJICKAL A I, MANKAR J S, et al. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons [J]. Journal of Hazardous Materials, 2020, 398: 122994. doi: 10.1016/j.jhazmat.2020.122994 [4] 国家统计局. 国家数据[EB/OL].[2022-03-24]. [5] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [6] 丁剑楠, 张闪闪, 邹华, 等. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展 [J]. 生态环境学报, 2017, 26(9): 1619-1626. DING J N, ZHANG S S, ZOU H, et al. Occurrence, source and ecotoxicological effect of microplastics in freshwater environment [J]. Ecology and Environment Sciences, 2017, 26(9): 1619-1626(in Chinese).
[7] 刘强, 徐旭丹, 黄伟, 等. 海洋微塑料污染的生态效应研究进展 [J]. 生态学报, 2017, 37(22): 7397-7409. LIU Q, XU X D, HUANG W, et al. Research advances on the ecological effects of microplastic pollution in the marine environment [J]. Acta Ecologica Sinica, 2017, 37(22): 7397-7409(in Chinese).
[8] BESSELING E, QUIK J T K, SUN M Z, et al. Fate of nano- and microplastic in freshwater systems: A modeling study [J]. Environmental Pollution, 2017, 220: 540-548. doi: 10.1016/j.envpol.2016.10.001 [9] FU Z L, WANG J. Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China [J]. Science of the Total Environment, 2019, 691: 697-712. doi: 10.1016/j.scitotenv.2019.07.167 [10] GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers for small microplastics and nanoplastics identification in seawater [J]. Environmental Science & Technology, 2019, 53(15): 9003-9013. [11] LI J Y, LIU H H, PAUL CHEN J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection [J]. Water Research, 2018, 137: 362-374. doi: 10.1016/j.watres.2017.12.056 [12] SUARIA G, ACHTYPI A, PEROLD V, et al. Microfibers in oceanic surface waters: A global characterization [J]. Science Advances, 2020, 6(23): eaay8493. doi: 10.1126/sciadv.aay8493 [13] ZHANG K, SHI H H, PENG J P, et al. Microplastic pollution in China’s inland water systems: A review of findings, methods, characteristics, effects, and management [J]. Science of the Total Environment, 2018, 630: 1641-1653. doi: 10.1016/j.scitotenv.2018.02.300 [14] HANVEY J S, LEWIS P J, LAVERS J L, et al. A review of analytical techniques for quantifying microplastics in sediments [J]. Analytical Methods, 2017, 9(9): 1369-1383. doi: 10.1039/C6AY02707E [15] KÄPPLER A, FISCHER M, SCHOLZ-BÖTTCHER B M, et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments [J]. Analytical and Bioanalytical Chemistry, 2018, 410(21): 5313-5327. doi: 10.1007/s00216-018-1185-5 [16] MATSUGUMA Y, TAKADA H, KUMATA H, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution [J]. Archives of Environmental Contamination and Toxicology, 2017, 73(2): 230-239. doi: 10.1007/s00244-017-0414-9 [17] QUINN B, MURPHY F, EWINS C. Validation of density separation for the rapid recovery of microplastics from sediment [J]. Analytical Methods, 2017, 9(9): 1491-1498. doi: 10.1039/C6AY02542K [18] TURNER S, HORTON A A, ROSE N L, et al. A temporal sediment record of microplastics in an urban lake, London, UK [J]. Journal of Paleolimnology, 2019, 61(4): 449-462. doi: 10.1007/s10933-019-00071-7 [19] JABEEN K. Characteristics of microplastics in fish from coastal and fresh waters of China [D]. 上海: 华东师范大学, 2018. JABEEN K. Characteristics of microplastics in fish from coastal and fresh waters of China [D]. Shanghai: East China Normal University, 2018.
[20] VANDERMEERSCH G, van CAUWENBERGHE L, JANSSEN C R, et al. A critical view on microplastic quantification in aquatic organisms [J]. Environmental Research, 2015, 143: 46-55. doi: 10.1016/j.envres.2015.07.016 [21] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: A case study in Greater Paris [J]. Environmental Chemistry, 2015, 12(5): 592-599. doi: 10.1071/EN14167 [22] DEHGHANI S, MOORE F, AKHBARIZADEH R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran [J]. Environmental Science and Pollution Research, 2017, 24(25): 20360-20371. doi: 10.1007/s11356-017-9674-1 [23] KAYA A T, YURTSEVER M, BAYRAKTAR S Ç. Ubiquitous exposure to microfiber pollution in the air [J]. The European Physical Journal Plus, 2018, 133(11): 488. doi: 10.1140/epjp/i2018-12372-7 [24] WRIGHT S L, ULKE J, FONT A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport [J]. Environment International, 2020, 136: 105411. doi: 10.1016/j.envint.2019.105411 [25] YUKIOKA S, TANAKA S, NABETANI Y, et al. Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal) [J]. Environmental Pollution, 2020, 256: 113447. doi: 10.1016/j.envpol.2019.113447 [26] GASTON E, WOO M, STEELE C, et al. Microplastics differ between indoor and outdoor air masses: Insights from multiple microscopy methodologies [J]. Applied Spectroscopy, 2020, 74(9): 1079-1098. doi: 10.1177/0003702820920652 [27] CAI L Q, WANG J D, PENG J P, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence [J]. Environmental Science and Pollution Research, 2017, 24(32): 24928-24935. doi: 10.1007/s11356-017-0116-x [28] 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异 [J]. 科学通报, 2017, 62(33): 3902-3909. doi: 10.1360/N972017-00956 ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909(in Chinese). doi: 10.1360/N972017-00956
[29] 田媛, 涂晨, 周倩, 等. 环渤海海岸大气微塑料污染时空分布特征与表面形貌 [J]. 环境科学学报, 2020, 40(4): 1401-1409. TIAN Y, TU C, ZHOU Q, et al. The temporal and spatial distribution and surface morphology of atmospheric microplastics around the Bohai Sea [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1401-1409(in Chinese).
[30] LIU K, WANG X H, FANG T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai [J]. Science of the Total Environment, 2019, 675: 462-471. doi: 10.1016/j.scitotenv.2019.04.110 [31] LI Y W, SHAO L Y, WANG W H, et al. Airborne fiber particles: Types, size and concentration observed in Beijing [J]. Science of the Total Environment, 2020, 705: 135967. doi: 10.1016/j.scitotenv.2019.135967 [32] 涂晨, 田媛, 刘颖, 等. 大连海岸带夏、秋季大气沉降(微)塑料的赋存特征及其表面生物膜特性 [J]. 环境科学, 2022, 43(4): 1821-1828. TU C, TIAN Y, LIU Y, et al. Occurrence of atmospheric(micro)plastics and the characteristics of the plastic associated biofilms in the coastal zone of Dalian in summer and autumn [J]. Environmental Science, 2022, 43(4): 1821-1828(in Chinese).
[33] 门志远, 刘硕, 李昀东, 等. 哈尔滨新区不同下垫面悬浮大气微塑料污染特征及潜在生态风险评估 [J]. 环境科学学报, 2022, 42(6): 329-336. MEN Z Y, LIU S, LI Y D, et al. Pollution characteristics and potential ecological risk assessment of microplastics suspended in different underlying surfaces in Harbin New Area [J]. Acta Scientiae Circumstantiae, 2022, 42(6): 329-336(in Chinese).
[34] 刘立明, 王超, 巩文雯, 等. 宜昌市大气微塑料的分布、呼吸暴露及溯源[J]. 环境科学, 2023, 44(6): 3152-3164. LIU L M, WANG C, GONG W W, et al. Distribution, respiratory exposure and traceability of atmospheric microplastics in Yichang City [J]. Environmental Science, 2023, 44(6): 3152-3164(in Chinese).
[35] WANG X H, LI C J, LIU K, et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: Abundance, distribution and source [J]. Journal of Hazardous Materials, 2020, 389: 121846. doi: 10.1016/j.jhazmat.2019.121846 [36] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. [37] DRIS R, GASPERI J, MIRANDE C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments [J]. Environmental Pollution, 2017, 221: 453-458. doi: 10.1016/j.envpol.2016.12.013 [38] ABBASI S, KESHAVARZI B, MOORE F, et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran [J]. Environmental Pollution, 2019, 244: 153-164. doi: 10.1016/j.envpol.2018.10.039 [39] KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany [J]. Science of the Total Environment, 2019, 685: 96-103. doi: 10.1016/j.scitotenv.2019.05.405 [40] LIU K, WU T N, WANG X H, et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere [J]. Environmental Science & Technology, 2019, 53(18): 10612-10619. [41] LIU K, WANG X H, WEI N, et al. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health [J]. Environment International, 2019, 132: 105127. doi: 10.1016/j.envint.2019.105127 [42] ZHU X, HUANG W, FANG M Z, et al. Airborne microplastic concentrations in five megacities of northern and southeast China[J]. Environmental Science & Technology, 2021: acs. est. 1c03618. [43] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment [J]. Nature Geoscience, 2019, 12(5): 339-344. doi: 10.1038/s41561-019-0335-5 [44] 冯三三, 卢宏玮, 姚天次, 等. 青藏高原典型区微塑料分布特征及来源分析 [J]. 地理学报, 2021, 76(9): 2130-2141. FENG S S, LU H W, YAO T C, et al. Distribution and source analysis of microplastics in typical areas of Qinghai-Tibet Plateau [J]. Acta Geographica Sinica, 2021, 76(9): 2130-2141(in Chinese).
[45] JULIEN B, DAMIEN F. Primary microplastics in the oceans[M]. IUCN, Gland, Switzerland, 2017. [46] 杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展 [J]. 环境化学, 2018, 37(3): 383-396. doi: 10.7524/j.issn.0254-6108.2017071002 YANG J J, XU L, LU A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment [J]. Environmental Chemistry, 2018, 37(3): 383-396(in Chinese). doi: 10.7524/j.issn.0254-6108.2017071002
[47] 刘艳, 唐颖, 宋阳, 等. 源于织物洗涤过程的微塑料释放 [J]. 印染, 2021, 47(7): 72-74. LIU Y, TANG Y, SONG Y, et al. Microplastic release from the fabric washing process [J]. China Dyeing and Finishing, 2021, 47(7): 72-74(in Chinese).
[48] O'BRIEN S, OKOFFO E D, O'BRIEN J W, et al. Airborne emissions of microplastic fibres from domestic laundry dryers [J]. Science of the Total Environment, 2020, 747: 141175. doi: 10.1016/j.scitotenv.2020.141175 [49] 陈贤川, 熊雄, 吴辰熙. 一次性防护口罩使用向环境中释放微塑料的潜力研究 [J]. 环境保护, 2020, 48(23): 53-55. CHEN X C, XIONG X, WU C X. Study on the potential of microplastics released into the environment by using disposable protective masks [J]. Environmental Protection, 2020, 48(23): 53-55(in Chinese).
[50] JULIE M P, JENNIFER C, MARISA L K, et al. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States [J]. Atmospheric Environment, 2013, 72: 192-199. doi: 10.1016/j.atmosenv.2013.01.040 [51] 江桂斌, 郑明辉, 孙红文. 环境化学前沿-第二辑[M]. 北京: 科学出版社, 2019. JIANG G B, ZHENG M H, SUN H W. Frontiers of environmental chemistry-part II[M]. Beijing: Science Press, 2019(in Chinese).
[52] CONG Z, KANG S, KAWAMURA K, et al. Carbonaceous aerosols on the south edge of the Tibetan Plateau: Concentrations, seasonality and sources [J]. Atmospheric Chemistry and Physics, 2015, 15(3): 1573-1584. doi: 10.5194/acp-15-1573-2015 [53] 张沐旭, 贺文智, 李光明, 等. 大气环境中微塑料的产生及其环境危害 [J]. 应用化工, 2022, 51(10): 3025-3029,3037. doi: 10.3969/j.issn.1671-3206.2022.10.044 ZHANG M X, HE W Z, LI G M, et al. The production of airborne microplastics and its environmental hazards [J]. Applied Chemical Industry, 2022, 51(10): 3025-3029,3037(in Chinese). doi: 10.3969/j.issn.1671-3206.2022.10.044
[54] TRAINIC M, FLORES J M, PINKAS I, et al. Airborne microplastic particles detected in the remote marine atmosphere [J]. Communications Earth & Environment, 2020, 1: 64. [55] 邓延慧, 万冰洲, TANVEER M. ADYEL, 等. 自然环境中微塑料样品的采集与分离方法 [J]. 环境监测管理与技术, 2020, 32(4): 1-4,9. doi: 10.3969/j.issn.1006-2009.2020.04.001 DENG Y H, WAN B Z, ADYEL T, et al. Collection and separation of microplastic samples in natural environment [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(4): 1-4,9(in Chinese). doi: 10.3969/j.issn.1006-2009.2020.04.001
[56] 李昇昇, 李良忠, 李敏, 等. 环境样品中微塑料及其结合污染物鉴别分析研究进展 [J]. 环境化学, 2020, 39(4): 960-974. doi: 10.7524/j.issn.0254-6108.2019102304 LI S S, LI L Z, LI M, et al. Study on identification of microplastics and the combined pollutants in environmental samples [J]. Environmental Chemistry, 2020, 39(4): 960-974(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102304
[57] 周帅, 李伟轩, 唐振平, 等. 气载微塑料的赋存特征、迁移规律与毒性效应研究进展 [J]. 中国环境科学, 2020, 40(11): 5027-5037. doi: 10.3969/j.issn.1000-6923.2020.11.045 ZHOU S, LI W X, TANG Z P, et al. Progress on the occurrence, migration and toxicity of airborne microplastics [J]. China Environmental Science, 2020, 40(11): 5027-5037(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.045
[58] 李臻阳, 杨书申, 徐亮, 等. 大气环境中微塑料污染及其分析技术的研究进展 [J]. 环境化学, 2022, 41(4): 1114-1123. doi: 10.7524/j.issn.0254-6108.2020112702 LI Z Y, YANG S S, XU L, et al. Progress on microplastics pollution and its analysis methods in the atmosphere [J]. Environmental Chemistry, 2022, 41(4): 1114-1123(in Chinese). doi: 10.7524/j.issn.0254-6108.2020112702
[59] DESFORGES J P W, GALBRAITH M, DANGERFIELD N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 2014, 79(1-2): 94-99. doi: 10.1016/j.marpolbul.2013.12.035 [60] 汤庆峰, 李琴梅, 魏晓晓, 等. 环境样品中微塑料分析技术研究进展 [J]. 分析测试学报, 2019, 38(8): 1009-1019. doi: 10.3969/j.issn.1004-4957.2019.08.019 TANG Q F, LI Q M, WEI X X, et al. Progress on research of analysis techniques for microplastics in environmental samples [J]. Journal of Instrumental Analysis, 2019, 38(8): 1009-1019(in Chinese). doi: 10.3969/j.issn.1004-4957.2019.08.019
[61] KIM I S, CHAE D H, KIM S K, et al. Factors influencing the spatial variation of microplastics on high-tidal coastal beaches in Korea [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 299-309. doi: 10.1007/s00244-015-0155-6 [62] DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by zooplankton in the northeast Pacific Ocean [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 320-330. doi: 10.1007/s00244-015-0172-5 [63] FOK L, CHEUNG P K. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution [J]. Marine Pollution Bulletin, 2015, 99(1-2): 112-118. doi: 10.1016/j.marpolbul.2015.07.050 [64] HOFFMAN A, TURNER K. Microbeads and engineering design in chemistry: No small educational investigation [J]. Journal of Chemical Education, 2015, 92(4): 742-746. doi: 10.1021/ed500623k [65] CLAESSENS M, VAN CAUWENBERGHE L, VANDEGEHUCHTE M B, et al. New techniques for the detection of microplastics in sediments and field collected organisms [J]. Marine Pollution Bulletin, 2013, 70(1/2): 227-233. [66] 王小娟, 关杰, 高帅, 等. 化学消解法前处理含微塑料环境样品的研究进展 [J]. 现代化工, 2022, 42(11): 33-37,43. WANG X J, GUAN J, GAO S, et al. Research progress on pretreatment of microplastics-containing environmental samples by chemical digestion [J]. Modern Chemical Industry, 2022, 42(11): 33-37,43(in Chinese).
[67] DE WITTE B, DEVRIESE L, BEKAERT K, et al. Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types [J]. Marine Pollution Bulletin, 2014, 85(1): 146-155. doi: 10.1016/j.marpolbul.2014.06.006 [68] 李陵云, 朱静敏, 李佳娜, 等. 水生生物样品中微塑料的提取和分离方法综述 [J]. 海洋环境科学, 2019, 38(2): 187-191,197. LI L Y, ZHU J M, LI J N, et al. Review on methods for extraction and isolation of microplastics in aquatic organisms [J]. Marine Environmental Science, 2019, 38(2): 187-191,197(in Chinese).
[69] MCCORMICK A, HOELLEIN T J, MASON S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river [J]. Environmental Science & Technology, 2014, 48(20): 11863-11871. [70] 王志超, 孟青, 李卫平, 等. 不同消解方法对微塑料质量及其表面特征的影响 [J]. 环境工程学报, 2020, 14(05): 1385-1393. WANG Z C, MENG Q, LI W P, et al. Effect of different digestion methods on microplastic quality and surface characteristics [J]. Chinese Journal of Environmental Engineering, 2020, 14(05): 1385-1393(in Chinese).
[71] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. doi: 10.1016/j.marpolbul.2011.09.025 [72] AVIO C G, GORBI S, REGOLI F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea [J]. Marine Environmental Research, 2015, 111: 18-26. doi: 10.1016/j.marenvres.2015.06.014 [73] HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices [J]. Environmental Science & Technology, 2018, 52(13): 7409-7417. [74] ZHAO S Y, ZHU L X, LI D J. Microplastic in three urban estuaries, China [J]. Environmental Pollution, 2015, 206: 597-604. doi: 10.1016/j.envpol.2015.08.027 [75] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展 [J]. 环境化学, 2017, 36(1): 27-36. doi: 10.7524/j.issn.0254-6108.2017.01.2016051704 WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment [J]. Environmental Chemistry, 2017, 36(1): 27-36(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051704
[76] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. [77] ABBASI S, KESHAVARZI B, MOORE F, et al. Investigation of microrubbers, microplastics and heavy metals in street dust: A study in Bushehr city, Iran [J]. Environmental Earth Sciences, 2017, 76(23): 798. doi: 10.1007/s12665-017-7137-0 [78] SONG Y K, HONG S H, JANG M, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples [J]. Marine Pollution Bulletin, 2015, 93(1/2): 202-209. [79] WANG W F, WANG J. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis [J]. TrAC Trends in Analytical Chemistry, 2018, 108: 195-202. doi: 10.1016/j.trac.2018.08.026 [80] 叶李嘉, 吴南翔. 微塑料的检测及其生态环境影响研究进展 [J]. 环境与职业医学, 2019, 36(12): 1161-1167,1174. YE L J, WU N X. Progress on detection of microplastics and their effects on ecosystem [J]. Journal of Environmental & Occupational Medicine, 2019, 36(12): 1161-1167,1174(in Chinese).
[81] BESSELING E, WANG B, LÜRLING M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna [J]. Environmental Science & Technology, 2014, 48(20): 12336-12343. [82] LA NASA J, BIALE G, FABBRI D, et al. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics [J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104841. doi: 10.1016/j.jaap.2020.104841 [83] STANTON T, JOHNSON M, NATHANAIL P, et al. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres [J]. Science of the Total Environment, 2019, 666: 377-389. doi: 10.1016/j.scitotenv.2019.02.278 [84] SRIDHARAN S, KUMAR M, SINGH L, et al. Microplastics as an emerging source of particulate air pollution: A critical review [J]. Journal of Hazardous Materials, 2021, 418: 126245. doi: 10.1016/j.jhazmat.2021.126245 [85] KERMINEN V M, CHEN X M, VAKKARI V, et al. Atmospheric new particle formation and growth: Review of field observations [J]. Environmental Research Letters, 2018, 13(10): 103003. doi: 10.1088/1748-9326/aadf3c [86] 张梦然. 大气微塑料的全球气候影响首次评估[N]. 科技日报, 2021-10-22(4). ZHAN M R. First assessment of the global climate impact of atmospheric microplastics[N]. Science and Technology Daily, 2021-10-22(4).
[87] VETHAAK A D, LEGLER J. Microplastics and human health [J]. Science, 2021, 371(6530): 672-674. doi: 10.1126/science.abe5041 [88] 张思梦, 查金, 孟伟, 等. 环境中的微塑料及其对人体健康的影响 [J]. 中国塑料, 2019, 33(4): 81-88. ZHANG S M, ZHA J, MENG W, et al. A review of microplastics in environment and their effects on human health [J]. China Plastics, 2019, 33(4): 81-88(in Chinese).
[89] PRATA J C. Airborne microplastics: Consequences to human health? [J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043 [90] DONG C D, CHEN C W, CHEN Y C, et al. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment [J]. Journal of Hazardous Materials, 2020, 385: 121575. doi: 10.1016/j.jhazmat.2019.121575 [91] XU M K, HALIMU G, ZHANG Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell [J]. Science of the Total Environment, 2019, 694: 133794. doi: 10.1016/j.scitotenv.2019.133794 [92] YANG S, CHENG Y P, CHEN Z Z, et al. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model [J]. Ecotoxicology and Environmental Safety, 2021, 226: 112837. doi: 10.1016/j.ecoenv.2021.112837