-
得克隆类物质(dechloranes)是一类化学性质稳定的高氯代阻燃剂,其种类包括Dechlorane 602(Dec 602)、Dechlorane 603(Dec 603)、Dechlorane 604(Dec 604)和Dechlorane Plus(DP)等,结构式如图1所示. 该类物质于20世纪60年代末被首次合成,广泛应用于电子设备、纺织品、电线电缆涂层等生产与生活用品材料中[1 − 3]. 据市场调研,DP的年产量为750—
6000 t[4]. 2006年Hoh等[5]首次在环境中检测出DP,随后人们对大气、水、土壤、生物等[6 − 11]中的得克隆类物质展开了研究,发现其在环境中普遍存在,并具有生物蓄积性[12]、长距离迁移性等与持久性有机物(persistent organic pollutants, POPs)相似的特性[13]. 此外,DP具有强疏水性(lg Kow=9.03)[4],能够通过食物链进入人体,进而危害人类生命健康. 毒理学研究表明,得克隆类物质具有神经行为毒性,能够影响胚胎发育,长期接触会对肺部、肝脏和生殖系统等造成损伤[10, 14 − 16]. 2022年,欧盟化学品管理局(European Chemicals Agency, ECHA)风险评估委员会及社会经济分析委员会联合发布了限制DP投入欧盟市场的草案,禁止生产销售DP含量超过0.1%的产品[17]. 2023年,我国将DP列入重点管控新污染物清单,自2024年1月1日起,禁止其生产、加工使用及进出口[18].得克隆类物质在实际样品中以痕量水平存在(ng·L−1或ng·kg−1—μg·kg−1),复杂基质干扰加大了对其检测的难度,需将样品前处理技术与检测方法结合,提高分析灵敏度与准确性. 样品前处理是对样品中待测组分进行提取、净化、富集的过程. 该过程耗时长、易引起误差,直接影响分析结果的准确性和可靠性[19 − 20]. 目前,液液萃取、固相萃取等被用于液体样品中得克隆类物质的分离富集,索氏提取、加速溶剂萃取等多被用于固体样品中得克隆类物质的萃取. 检测方法主要有气相色谱-质谱法、气相色谱-高分辨质谱法、气相色谱-串联质谱法以及液相色谱-串联质谱法等(见表1).
近几年关于得克隆类物质相关综述侧重报道生物体中得克隆类物质的分析方法及污染水平和来源的研究. 本文侧重总结和讨论近年来大气,水体,土壤,沉积物以及生物体中得克隆类物质的样品前处理方法和检测技术研究进展,并对该领域未来发展进行了展望.
得克隆类物质检测技术及其研究进展
Research progress on detection methods of Dechloranes
-
摘要: 得克隆类物质(dechloranes)作为一类添加型氯代阻燃剂,广泛应用于电子设备、纺织品等材料的加工生产中. 随着该类阻燃剂在生产生活中的大量使用,导致其在环境中存在并不断累积,经多种介质进入人体,进而产生神经毒性,损坏肌肉细胞,对DNA产生破坏作用. 得克隆类物质具有持久性、长距离迁移性和生物蓄积性,对人体健康和环境造成严重危害,2018年被欧洲化学品管理署列入第18批高关注化合物清单. 美国国家环境保护局将得克隆划归为高产量化学品,中国也将其列入2023年重点管控新污染物清单. 因此,环境样品中得克隆类物质污染水平的准确分析和严格控制是至关重要的. 由于得克隆类物质在环境中痕量残留,且实际样品存在复杂基质干扰,需将样品前处理技术与检测方法结合以提高分析灵敏度与准确性. 本文重点围绕环境样品中得克隆类物质的样品前处理技术及仪器分析方法两方面进行综述,总结了不同样品中得克隆类物质的前处理技术(液液萃取、固相萃取、索氏提取、加速溶剂萃取、基质分散固相萃取等),详细介绍了气相色谱-质谱法、气相色谱-串联质谱法、液相色谱-串联质谱法等检测方法在得克隆类物质检测中的应用. 最后,对未来相关分析方法的发展趋势进行了展望.Abstract: Dechloranes, which are additive-type chlorine flame retardants, are widely used in the process of industrial production, such as electronic equipments and textiles. Due to extensive use and massive emissions in production and daily life, dechloranes enter the human individuals through various medium, leading to neurobehavioral toxicity, muscle injuries, and DNA damage. Dechloranes can pose a significant risk to human health and environment because of the persistent, long-distance transport and bioaccumulation. In 2018, European Chemicals Agency has added dechlorane plus of very high concern to the Candidate List. It is also subject to the United States Environmental Protection Agency’s High Production Volume challenge and in the list of Chinese New Pollutants under Key Control. It has become a great challenge to analyze dechloranes in biology and the environment because of the low level and complex matrix interference, hence, a combination of sample pretreatment methods and determination technology is imperative for enhancing the sensitivity and accuracy of analysis. In this paper, various methods for sample pretreatment and instrumental analysis of dechloranes in the environment are reviewed. Sample pretreatment techniques of dechloranes are summarized, such as liquid-liquid extraction (LLE), solid phase extraction (SPE), soxhlet extraction (SE), accelerated solvent extraction (ASE) and matrix solid phase dispersive extraction (MSPD). The applications of instrument methods for dechloranes are discussed in detail, including gas chromatography-mass spectrometry (GC-MS), gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Finally, the future development trends of the relevant analytical methods of dechloranes were proposed.
-
Key words:
- dechloranes /
- chlorine flame retardants /
- pretreatment /
- determination.
-
表 1 不同样品基质中得克隆类物质的分析方法与分析性能
Table 1. Analytical methods and performance of dechloranes in various samples
样品
Sample样品前处理
Sample
pretreatment净化
Clean-up回收率/%
Recovery仪器分析
Instrumental analysis检出限
Limit of
detection相对标准
偏差/%
RSD参考文献
Reference大气 SE 硅胶柱 76—94 GC-ECNI-MS 0.096—0.696 pg·m−3 [29] SE 硅胶柱 29—85 GC-NCI-MS 0.0004 —0.07 pg·m−3[28] 水样 LLE 硅胶柱 61—91 GC-NCI-MS 0.01—0.08 ng·L−1 <5.1 [22] LLE 硅胶柱 74—122 GC-NCI-MS 0.01—0.1 ng·L−1 <13.2 [23] LLE 硅胶柱 71—94 GC-NCI-MS 40—50 pg·L−1 <15 [53] LLE 硅胶柱 71—113 GC–NCI-MS 0.052—0.066 ng·mL−1 2—3 [54] UA-DLLME 75—92 GC-ECNI-MS 0.08—0.3 ng·L−1 <9 [39] SPE 75—94 GC-EI-MS/MS 0.4—0.5 pg·L−1 4—9 [25] 土壤及沉积物 ASE C18固相萃取柱 88.78—98.23 GC-EI-MS/MS 0.04 ng·g−1 <4.53 [47] ASE GCB/PSA固相萃取柱 84.7—108 GC-EI-MS/MS 0.17—11 pg·g−1 4.3—13 [30] ASE 活性铜 97—103 GC-ECNI-MS/MS 0.15—0.75 pg·g−1 4—5 [40] ASE 多层硅胶柱 50—90 GC-HRMS 1.6—7.8 ng·g−1 10—18 [55] ASE Florisil固相萃取柱 90.3—99.8 GC-ECNI-MS 0.01—0.67 ng·g−1 1.3—5.7 [32] ASE 硅胶柱 88—107 GC-HRMS 0.27—0.33 pg 5.2—18 [45] ASE 活性二氧化硅 61 GC-Q-TOF-HRMS 0.01—0.02 ng·g−1 <30 [56] SE 硅胶-氧化铝柱 70—85 GC-HRMS 11—2000 pg·g−1 [57] SE 多层硅胶柱 77.5—125.2 GC-MS 0.001—0.006 ng·g−1 [58] SE 硅胶-氧化铝柱 88.7—101.9 GC-ECNI-MS 0.36—110 pg·g−1 [59] SE 活性铜 78—122 GC-ECNI-MS 0.0014 —0.054 ng·g−1<14 [60] SE 硅胶柱;GPC 78—95 GC-MS/MS 5.6—79 pg·g−1 5—16 [61] SE 多层硅胶-氧化铝柱 38—128 GC-MS/MS 0.25—2.50 pg·g−1 [62] SE 氧化铝柱 93 GC-NCI-MS 17.6—27.2 ng·kg−1 11 [63] SE 硅胶-氧化铝柱 80 GC-ECNI-MS 1.3—7.6 pg·g−1 9 [64] 生物样品 MSPD 多层硅胶柱 104—112 GC-NCI-MS 0.5—2 pg·g−1 2—8 [34] MSPD Florisil固相萃取柱 73—85 GC-ECNICI-MS 3—5 pg·g−1 2—6.1 [33] MSPD 101—110 GC–NCI-MS 0.6—9 pg·g−1 1.4—4.9 [65] ASE 多层硅胶柱;GPC 74—113 GC-EI-HRMS 0.1—0.5 pg·g−1 <20 [43] ASE GPC;硅胶柱 72.4—98 GC-MS/MS 0.4—3.5 ng·g−1 [66] ASE GPC 63—121 GC-EI-HRMS 0.01—0.87 ng·g−1 2—25 [67] ASE 硅胶柱 71—91 HRGC–HRMS 0.007—0.169 pg·g−1 10 [68] SE GPC 85—121 GC-HRMS 0.04—0.99 pg·g−1 [69] SE Florisil-硅胶柱 80—121 GC–NCI-MS 0.1—0.8 pg·g−1 <20 [70] SE 活性铜;多层硅胶柱 78—121 GC-ECNI-MS 0.001— 0.0067 ng·g−1<15 [71] SE 多层硅胶柱;GPC 78—121 GC-ECNI-MS 0.02—0.68 ng·g−1 <15 [72] SE Florisil固相萃取柱 47.8—130 GC-ECNICI-MS 0.001—0.27 ng·g−1 2.9—7.1 [73] SE 多层硅胶柱 65—105 GC-ECNI-MS 33—58 pg·g−1 [74] ND. 未检出. ND. not detected -
[1] TOMY G T, PLESKACH K, ISMAIL N, et al. Isomers of dechlorane plus in Lake Winnipeg and Lake Ontario food webs[J]. Environmental Science & Technology, 2007, 41(7): 2249-2254. [2] QIU X H, MARVIN C H, HITES R A. Dechlorane plus and other flame retardants in a sediment core from Lake Ontario[J]. Environmental Science & Technology, 2007, 41(17): 6014-6019. [3] KAISER K L E. Pesticide Report: The rise and fall of mirex[J]. Environmental Science & Technology, 1978, 12(5): 520-528. [4] HANSEN K M, FAUSER P, VORKAMP K, et al. Global emissions of dechlorane plus[J]. The Science of the Total Environment, 2020, 742: 140677. doi: 10.1016/j.scitotenv.2020.140677 [5] HOH E, ZHU L Y, HITES R A. Dechlorane plus, a chlorinated flame retardant, in the great lakes[J]. Environmental Science & Technology, 2006, 40(4): 1184-1189. [6] ZAFAR M I, KALI S, ALI M, et al. Dechlorane Plus as an emerging environmental pollutant in Asia: A review[J]. Environmental Science and Pollution Research, 2020, 27(34): 42369-42389. doi: 10.1007/s11356-020-10609-2 [7] YU Z Q, LU S Y, GAO S T, et al. Levels and isomer profiles of Dechlorane Plus in the surface soils from e-waste recycling areas and industrial areas in South China[J]. Environmental Pollution, 2010, 158(9): 2920-2925. doi: 10.1016/j.envpol.2010.06.003 [8] YANG M, JIA H L, MA W L, et al. Levels, compositions, and gas-particle partitioning of polybrominated diphenyl ethers and dechlorane plus in air in a Chinese northeastern city[J]. Atmospheric Environment, 2012, 55: 73-79. doi: 10.1016/j.atmosenv.2012.03.040 [9] XIAN Q M, SIDDIQUE S, LI T, et al. Sources and environmental behavior of dechlorane plus—a review[J]. Environment International, 2011, 37(7): 1273-1284. doi: 10.1016/j.envint.2011.04.016 [10] CHEN X P, DONG Q X, CHEN Y H, et al. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish[J]. Environmental Pollution, 2017, 224: 7-15. doi: 10.1016/j.envpol.2017.03.011 [11] SKOGENG L P, LUNDER HALVORSEN H, BREIVIK K, et al. Spatial distribution of Dechlorane Plus and dechlorane related compounds in European background air[J]. Frontiers in Environmental Science, 2023, 10: 1083011. doi: 10.3389/fenvs.2022.1083011 [12] 刘红英, 罗孝俊. 生物对得克隆物种特异性立体异构体选择性富集及其潜在机理[J]. 生态毒理学报, 2022, 17(1): 47-59. LIU H Y, LUO X J. Species-specific stereo-selective enrichment of DP in organisms and their possible mechanisms[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 47-59 (in Chinese).
[13] GAO H, NA G S, YAO Y, et al. Distribution characteristics and source of dechloranes in soil and lichen of the fildes peninsula (Antarctica)[J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2312. doi: 10.3390/ijerph15102312 [14] YANG Y, JI F N, CUI Y B, et al. Ecotoxicological effects of earthworm following long-term Dechlorane Plus exposure[J]. Chemosphere, 2016, 144: 2476-2481. doi: 10.1016/j.chemosphere.2015.11.023 [15] LI B H, CHEN J J, DU Q Y, et al. Toxic effects of dechlorane plus on the common carp (Cyprinus carpio) embryonic development[J]. Chemosphere, 2020, 249: 126481. doi: 10.1016/j.chemosphere.2020.126481 [16] 袁陆妗, 陆光华, 叶秋霞, 等. 环境中得克隆的蓄积及毒理学效应[J]. 环境与健康杂志, 2013, 30(6): 550-553. YUAN L J, LU G H, YE Q X, et al. Accumulation in environment and ecotoxicological effects of dechlorane plus[J]. Journal of Environment and Health, 2013, 30(6): 550-553 (in Chinese).
[17] European Chemicals Agency. Submitted restrictions under consideration [EB/OL]. [2022-3-23]. [18] 中华人民共和国生态环境部. 重点管控新污染物清单(2023年版)[EB/OL]. [2022-12-29]. [19] 严矿林, 林丽琼, 郑夏汐, 等. 样品前处理技术在气相色谱分析中的应用进展[J]. 色谱, 2013, 31(7): 634-639. doi: 10.3724/SP.J.1123.2013.05035 YAN K L, LIN L Q, ZHENG X X, et al. Progress of sample preparation techniques in gas chromatographic analysis[J]. Chinese Journal of Chromatography, 2013, 31(7): 634-639 (in Chinese). doi: 10.3724/SP.J.1123.2013.05035
[20] 黄维妮, 林子俺. 色谱分析中样品前处理技术的发展动态[J]. 色谱, 2021, 39(1): 1-3. doi: 10.3724/SP.J.1123.2020.05011 HUANG W N, LIN Z A. Recent advances in sample pretreatment techniques for chromatographic analysis[J]. Chinese Journal of Chromatography, 2021, 39(1): 1-3 (in Chinese). doi: 10.3724/SP.J.1123.2020.05011
[21] FEO M L, BARÓN E, ELJARRAT E, et al. Dechlorane plus and related compounds in aquatic and terrestrial biota: A review[J]. Analytical and Bioanalytical Chemistry, 2012, 404(9): 2625-2637. doi: 10.1007/s00216-012-6161-x [22] 魏葳, 那广水, 赫春香, 等. GC-NCI/MS法分析海水中得克隆类物质[J]. 分析试验室, 2014, 33(2): 162-166. WEI W, NA G S, HE C X, et al. Determination and application of dechloranes in seawater by GC-MS[J]. Chinese Journal of Analysis Laboratory, 2014, 33(2): 162-166 (in Chinese).
[23] 齐虹, 黄俊, 沈吉敏, 等. 气相色谱-质谱联用法测定污水中得克隆阻燃剂[J]. 哈尔滨工业大学学报, 2010, 42(6): 995-999. QI H, HUANG J, SHEN J M, et al. Determination of Dechloranes in waste water by GC-NCI/MS[J]. Journal of Harbin Institute of Technology, 2010, 42(6): 995-999 (in Chinese).
[24] 傅若农. 近年国内固相萃取-色谱分析的进展[J]. 分析试验室, 2007, 26(2): 100-122. doi: 10.3969/j.issn.1000-0720.2007.02.026 FU R N. Advances on SPE-chromatography in China in recent two years[J]. Chinese Journal of Analysis Laboratory, 2007, 26(2): 100-122 (in Chinese). doi: 10.3969/j.issn.1000-0720.2007.02.026
[25] ZHANG H, BAYEN S, KELLY B. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore’s coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry[J]. Science of The Total Environment, 2015, 523: 219-232. doi: 10.1016/j.scitotenv.2015.04.012 [26] HUANG J J, LI R J, SHI T D, et al. Determination of multiple organic flame retardants in maricultural water using High-volume/High-throughput Solid-phase extraction followed by liquid/gas chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2022, 1663: 462766. doi: 10.1016/j.chroma.2021.462766 [27] LUQUE de CASTRO M D, PRIEGO-CAPOTE F. Soxhlet extraction: Past and present panacea[J]. Journal of Chromatography A, 2010, 1217(16): 2383-2389. doi: 10.1016/j.chroma.2009.11.027 [28] MÖLLER A, XIE Z Y, STURM R, et al. Large-scale distribution of dechlorane plus in air and seawater from the Arctic to Antarctica[J]. Environmental Science & Technology, 2010, 44(23): 8977-8982. [29] WANG D G, YANG M, QI H, et al. An Asia-specific source of dechlorane plus: Concentration, isomer profiles, and other related compounds[J]. Environmental Science & Technology, 2010, 44(17): 6608-6613. [30] 郭晓辰, 饶竹, 李晓洁, 等. 加速溶剂萃取/气相色谱-三重四极杆质谱测定土壤中8种得克隆类化合物[J]. 分析测试学报, 2019, 38(2): 141-147. GUO X C, RAO Z, LI X J, et al. Determination of 8 kinds of super trace dechloranes in soil by gas chromatography-triple quadrupole mass spectrometry with accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2019, 38(2): 141-147 (in Chinese).
[31] 程嘉雯, 田永, 李春欣, 等. 加速溶剂萃取技术应用于二噁英检测的研究进展[J]. 环境化学, 2021, 40(9): 2736-2746. CHENG J W, TIAN Y, LI C X, et al. Research progress of accelerated solvent extraction(ASE) technology in the detection of dioxins[J]. Environmental Chemistry, 2021, 40(9): 2736-2746 (in Chinese).
[32] ZHAO T, TANG H, CHEN D Z, et al. Rapid analysis of dechloranes in sediment and soil by selective pressurized liquid extraction using Mg-Al layered double oxides as sorbents[J]. Analytical Methods, 2017, 9(7): 1168-1176. doi: 10.1039/C7AY00009J [33] CHEN C L, TSAI D Y, DING W H. Optimisation of matrix solid-phase dispersion for the determination of Dechlorane compounds in marketed fish[J]. Food Chemistry, 2014, 164: 286-292. doi: 10.1016/j.foodchem.2014.05.035 [34] ROSCALES J L, VICENTE A, RAMOS L, et al. Miniaturised sample preparation method for the multiresidual determination of regulated organohalogenated pollutants and related compounds in wild bird eggs[J]. Analytical and Bioanalytical Chemistry, 2017, 409(20): 4905-4913. doi: 10.1007/s00216-017-0432-5 [35] LI Y N, ZHEN X M, LIU L, et al. Halogenated flame retardants in the sediments of the Chinese Yellow Sea and East China Sea[J]. Chemosphere, 2019, 234: 365-372. doi: 10.1016/j.chemosphere.2019.06.115 [36] ZHANG Z W, PEI N C, SUN Y X, et al. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China[J]. Environmental Research, 2019, 171: 145-152. doi: 10.1016/j.envres.2019.01.028 [37] 程嘉雯, 马继平, 李爽, 等. 六溴环十二烷的样品前处理和检测方法研究进展[J]. 色谱, 2022, 40(10): 872-881. doi: 10.3724/SP.J.1123.2022.03030 CHENG J W, MA J P, LI S, et al. Progress in sample pretreatment and detection methods of hexabromocyclododecanes[J]. Chinese Journal of Chromatography, 2022, 40(10): 872-881 (in Chinese). doi: 10.3724/SP.J.1123.2022.03030
[38] PENG Y, WU J P, LUO X J, et al. Spatial distribution and hazard of halogenated flame retardants and polychlorinated biphenyls to common kingfisher (Alcedo atthis) from a region of South China affected by electronic waste recycling[J]. Environment International, 2019, 130: 104952. doi: 10.1016/j.envint.2019.104952 [39] HSIEH H K, CHEN C L, DING W H. Determination of Dechlorane compounds in aqueous samples using ultrasound-assisted dispersive liquid-liquid microextraction and gas chromatography-electron-capture negative ion-mass spectrometry[J]. Analytical Methods, 2013, 5(24): 7001-7007. doi: 10.1039/c3ay41505h [40] REN G F, YU Z Q, MA S T, et al. Determination of Dechlorane Plus in serum from electronics dismantling workers in South China[J]. Environmental Science & Technology, 2009, 43(24): 9453-9457. [41] 霍炜江, 张子豪, 温信凯, 等. 气相色谱质谱法测定胶黏剂中得克隆阻燃剂[J]. 化学研究与应用, 2023, 35(3): 727-731. HUO W J, ZHANG Z H, WEN X K, et al. Determination of dechlorane plus flame retardant in adhesive by gas chromatography mass spectrometry[J]. Chemical Research and Application, 2023, 35(3): 727-731 (in Chinese).
[42] ZHEN X M, LI Y F, WANG X M, et al. Source, fate and budget of Dechlorane Plus (DP) in a typical semi-closed sea, China[J]. Environmental Pollution, 2021, 269: 116214. doi: 10.1016/j.envpol.2020.116214 [43] ABDEL MALAK I, CARIOU R, VÉNISSEAU A, et al. Occurrence of Dechlorane Plus and related compounds in catfish (Silurus spp. ) from rivers in France[J]. Chemosphere, 2018, 207: 413-420. doi: 10.1016/j.chemosphere.2018.05.101 [44] XU P J, TAO B, YE Z Q, et al. Simultaneous determination of three alternative flame retardants (dechlorane plus, 1, 2-bis(2, 4, 6-tribromophenoxy) ethane, and decabromodiphenyl ethane) in soils by gas chromatography-high resolution mass spectrometry[J]. Talanta, 2015, 144: 1014-1020. doi: 10.1016/j.talanta.2015.07.031 [45] SALES C, POMA G, MALARVANNAN G, et al. Simultaneous determination of dechloranes, polybrominated diphenyl ethers and novel brominated flame retardants in food and serum[J]. Analytical and Bioanalytical Chemistry, 2017, 409(19): 4507-4515. doi: 10.1007/s00216-017-0411-x [46] NEUGEBAUER F, DREYER A, LOHMANN N, et al. Determination of halogenated flame retardants by GC-API-MS/MS and GC-EI-MS: A multi-compound multi-matrix method[J]. Analytical and Bioanalytical Chemistry, 2018, 410(4): 1375-1387. doi: 10.1007/s00216-017-0784-x [47] 谢慧, 常晓云, 马钰涵, 等. 土壤和大米中得克隆检测方法的研究[J]. 农业环境科学学报, 2020, 39(11): 2692-2698. XIE H, CHANG X Y, MA Y H, et al. Study on the detection method of dechlorane plus residue in soil and rice[J]. Journal of Agro-Environment Science, 2020, 39(11): 2692-2698 (in Chinese).
[48] 刘合欢, 李会茹, 张文兵, 等. 气相色谱-串联质谱法测定得克隆及其相关化合物在土壤样品中的含量[J]. 分析化学, 2017, 45(3): 423-428. LIU H H, LI H R, ZHANG W B, et al. Co-analysis of dechlorane plus and related compounds in soil sample by gas chromatography coupled with triple tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 423-428 (in Chinese).
[49] BARÓN E, ELJARRAT E, BARCELÓ D. Analytical method for the determination of halogenated norbornene flame retardants in environmental and biota matrices by gas chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1248: 154-160. doi: 10.1016/j.chroma.2012.05.079 [50] ZHOU S N, REINER E J, MARVIN C H, et al. Liquid chromatography/atmospheric pressure photoionization tandem mass spectrometry for analysis of Dechloranes[J]. Rapid Communications in Mass Spectrometry:RCM, 2011, 25(3): 436-442. doi: 10.1002/rcm.4874 [51] AL-ODAINI N A, YIM U H, KIM N S, et al. Isotopic dilution determination of emerging flame retardants in marine sediments by HPLC-APCI-MS/MS[J]. Analytical Methods, 2013, 5(7): 1771-1778. doi: 10.1039/c3ay25963c [52] RIDDELL N, van BAVEL B, ERICSON JOGSTEN I, et al. Coupling of supercritical fluid chromatography to mass spectrometry for the analysis of Dechlorane Plus: Examination of relevant negative ion atmospheric pressure chemical ionization mechanisms[J]. Talanta, 2017, 171: 68-73. doi: 10.1016/j.talanta.2017.04.066 [53] QI H, LIU L Y, JIA H L, et al. Dechlorane Plus in surficial water and sediment in a northeastern Chinese River[J]. Environmental Science & Technology, 2010, 44(7): 2305-2308. [54] WANG D P, JIA H L, HONG W J, et al. Uptake, depuration, bioaccumulation, and selective enrichment of dechlorane plus in common carp (Cyprinus carpio)[J]. Environmental Science and Pollution Research International, 2020, 27(6): 6269-6277. doi: 10.1007/s11356-019-07239-8 [55] ZHAO X R, CUI T T, GUO R, et al. A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample[J]. Analytica Chimica Acta, 2019, 1047: 71-80. doi: 10.1016/j.aca.2018.10.011 [56] NIPEN M, VOGT R D, BOHLIN-NIZZETTO P, et al. Spatial trends of chlorinated paraffins and dechloranes in air and soil in a tropical urban, suburban, and rural environment[J]. Environmental Pollution, 2022, 292: 118298. doi: 10.1016/j.envpol.2021.118298 [57] SHEN L, JOBST K J, REINER E J, et al. Identification and occurrence of analogues of dechlorane 604 in Lake Ontario sediment and their accumulation in fish[J]. Environmental Science & Technology, 2014, 48(19): 11170-11177. [58] HU Y X, LI Z R, XIONG J J, et al. Occurrence and ecological risks of brominated flame retardants and dechlorane plus in sediments from the Pearl River Estuary and Daya Bay, South China[J]. Marine Pollution Bulletin, 2022, 185: 114182. doi: 10.1016/j.marpolbul.2022.114182 [59] AN Q, AAMIR M, MAO S D, et al. Current pollution status, spatial features, and health risks of legacy and emerging halogenated flame retardants in agricultural soils across China[J]. Science of the Total Environment, 2022, 803: 150043. doi: 10.1016/j.scitotenv.2021.150043 [60] XIE J L, SUN Y X, CHENG Y Y, et al. Halogenated flame retardants in surface sediments from fourteen estuaries, South China[J]. Marine Pollution Bulletin, 2021, 164: 112099. doi: 10.1016/j.marpolbul.2021.112099 [61] QIU Y W, WANG D X, ZHANG G. Assessment of persistent organic pollutants (POPs) in sediments of the Eastern Indian Ocean[J]. The Science of the Total Environment, 2020, 710: 136335. doi: 10.1016/j.scitotenv.2019.136335 [62] LI H R, SONG A M, LIU H H, et al. Occurrence of Dechlorane series flame retardants in sediments from the Pearl River Delta, South China[J]. Environmental Pollution, 2021, 279: 116902. doi: 10.1016/j.envpol.2021.116902 [63] LI N, CHEN X W, DENG W J, et al. PBDEs and Dechlorane Plus in the environment of Guiyu, Southeast China: A historical location for E-waste recycling (2004, 2014)[J]. Chemosphere, 2018, 199: 603-611. doi: 10.1016/j.chemosphere.2018.02.041 [64] QIU Y W, QIU H L, ZHANG G, et al. Bioaccumulation and cycling of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in three natural mangrove ecosystems of South China[J]. Science of the Total Environment, 2019, 651: 1788-1795. doi: 10.1016/j.scitotenv.2018.10.055 [65] VILLAVERDE-DE-SÁA E, VALLS-CANTENYS C, QUINTANA J B, et al. Matrix solid-phase dispersion combined with gas chromatography-mass spectrometry for the determination of fifteen halogenated flame retardants in mollusks[J]. Journal of Chromatography A, 2013, 1300: 85-94. doi: 10.1016/j.chroma.2013.05.064 [66] MARLER H, XIE J X, ADAMS D H, et al. Legacy and emerging flame retardants in sharks from the Western North Atlantic Ocean[J]. The Science of the Total Environment, 2022, 829: 154330. doi: 10.1016/j.scitotenv.2022.154330 [67] ČECHOVÁ E, SEIFERTOVÁ M, KUKUČKA P, et al. An effective clean-up technique for GC/EI-HRMS determination of developmental neurotoxicants in human breast milk[J]. Analytical and Bioanalytical Chemistry, 2017, 409(5): 1311-1322. doi: 10.1007/s00216-016-0059-y [68] PIZZOCHERO A C, deLa TORRE A, SANZ P, et al. Occurrence of legacy and emerging organic pollutants in whitemouth croakers from Southeastern Brazil[J]. The Science of the Total Environment, 2019, 682: 719-728. doi: 10.1016/j.scitotenv.2019.05.213 [69] RJABOVA J, VIKSNA A, ZACS D. Development and optimization of gas chromatography coupled to high resolution mass spectrometry based method for the sensitive determination of Dechlorane plus and related norbornene-based flame retardants in food of animal origin[J]. Chemosphere, 2018, 191: 597-606. doi: 10.1016/j.chemosphere.2017.10.095 [70] SUN R X, PAN C G, PENG F J, et al. Alternative halogenated flame retardants (AHFRs) in green mussels from the South China Sea[J]. Environmental Research, 2020, 182: 109082. doi: 10.1016/j.envres.2019.109082 [71] HU Y X, SUN Y X, PEI N C, et al. Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China[J]. Environmental Pollution, 2020, 260: 114087. doi: 10.1016/j.envpol.2020.114087 [72] ZHANG Z W, TONG X, XING Y, et al. Polybrominated diphenyl ethers, decabromodiphenyl ethane and dechlorane plus in aquatic products from the Yellow River Delta, China[J]. Marine Pollution Bulletin, 2020, 161(Pt A): 111733. [73] QIAO L, ZHENG X B, YAN X, et al. Brominated flame retardant (BFRs) and Dechlorane Plus (DP) in paired human serum and segmented hair[J]. Ecotoxicology and Environmental Safety, 2018, 147: 803-808. doi: 10.1016/j.ecoenv.2017.09.047 [74] PAN H Y, LI J F T, LI X H, et al. Transfer of dechlorane plus between human breast milk and adipose tissue and comparison with legacy lipophilic compounds[J]. Environmental Pollution, 2020, 265(Pt A): 115096.