-
抗生素作为一种可以有效抑制或者杀灭病原体的药物,在人类医疗和畜禽养殖中被广泛应用,进而通过污水处理厂等多种途径直接或间接进入环境,诱发各类抗生素耐药菌和抗性基因的广泛传播,对人类健康和生态安全造成长期潜在的威胁[1],引起了国际社会的广泛关注和高度重视. 我国是抗生素的生产和使用大国,它已经被列入了我国的重点管控新污染物清单,我国于2023年3月1日开始对其采取禁止、限制和限排等环境风险管控措施.
抗生素依照结构特征划分为四环素类、磺胺类,喹诺酮类、大环内酯类(macrolide antibiotic,MAs)等. 其中,MAs是一类分子结构中具有12—16 个碳内酯环的抗菌剂的统称. 根据Zhang等的调查,MAs在我国所有抗生素中使用量居于首位(达到26%)[2];而已有环境调查结果也显示MAs往往处于较高的污染水平[3 − 5]. 但是与四环素类、磺胺类和喹诺酮类相比较而言,MAs在环境中的存在种类、含量水平和风险评估研究较少[6]. 目前关注的MAs主要包括阿奇霉素、红霉素、罗红霉素、克拉霉素[7],然而,在实际应用于人类医疗和畜禽养殖的MAs还有很多,如竹桃霉素、乙酰螺旋霉素、交沙霉素、麦迪霉素、泰乐菌素、地红霉素、替米考星等,这些MAs共同暴露于环境中可能对生物造成协同或拮抗等联合毒性效应[8]. 朱松梅等以海洋发光菌为受试生物,研究发现红霉素与乙酰螺旋霉素复合污染能够发生协同作用[9]. 因此,有必要建立一种能够同时检测多种MAs的分析方法. 此外,林可霉素(林可酰胺类抗生素 [lincosamide antibiotics, LAs])是我国使用量最大的单个抗生素之一[2]. LAs主要包括林可霉素和氯林可霉素(也叫克林霉素),鉴于LAs与MAs抗菌作用机制类似[10],本研究考虑同时开展两类抗生素的环境研究.
将城市污水处理厂的污水经处理后进行再生回用,这是缓解城市水资源短缺问题的主要手段. 从2020年开始,再生水已经成为了北京市公园湖泊、河道等重要流域的主要补给水源. 但是,由于城市污水处理厂设计中很少考虑抗生素的去除,MAs等抗生素在污水处理厂出水和再生水中仍然频繁检出[11],环境水体接纳污水再生水补给后抗生素污染状况及风险需要开展进一步研究. 鉴于此,本研究以14种MAs和2种LAs为研究对象,应用固相萃取结合超高效液相色谱串联质谱仪(UPLC-MS/MS)建立高灵敏同时分析方法,并应用于接受再生水生态补水的北京北运河和永定河,初步调查MAs和LAs浓度水平、组成及分布特征,以期为今后科学地评估环境风险研究奠定基础.
超高效液相色谱串联质谱法同时测定水中16种大环内酯和林可酰胺类抗生素
Simultaneous determination of 16 macrolides and linconamides antibiotics in water by ultra performance liquid chromatography tandem mass spectrometry
-
摘要: 据调查,大环内酯类抗生素(MAs)在我国所有抗生素中使用量居于首位、污染水平处于较高水平;林可霉素(林可酰胺类抗生素 [LAs])是我国使用量最大的单个抗生素之一. 鉴于两类抗生素抗菌作用类似,本研究建立了同时分析地表水中14种MAs以及2种LAs的超高效液相色谱串联质谱(UPLC-MS/MS)分析方法. 水样萃取前添加0.5 g·L−1 Na2EDTA减少金属阳离子螯合影响,之后采用Oasis HLB固相萃取柱富集净化,最后以1%甲酸甲醇洗脱. UPLC-MS/MS测定采用甲醇和0.1%甲酸水作为流动相,根据质谱碎裂规律确定质谱定性定量离子对并采用多反应监测(MRM)模式进行分析. 实际水样中目标抗生素的加标回收率为77%—114%,方法检出限绝大多数在0.004—0.06 ng·L−1之间. 方法应用于北京北运河和永定河的35个水样,检出8种MAs和2种LAs,浓度在0.01—71 ng·L−1之间. 总体来讲,北运河浓度高于永定河,北运河上游受纳污水处理厂出水可能是重要原因. 两条河流检出物质浓度组成差异也较大,北运河主要是脱水红霉素A和罗红霉素,而永定河主要是脱水红霉素A. 首次检出N-去甲基红霉素A,另外,螺旋霉素、麦迪霉素、林可霉素和氯林可霉素都普遍检出.Abstract: Macrolide antibiotics (MAs) are the most commonly used antibiotics in China, with a relatively high level of pollution. Lincomycin, a kind of lincosamide antibiotics (LAs), is one of the most widely used individual antibiotics. In view of the similar antibacterial effects of the two types of antibiotics, an ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for simultaneous analysis of 14 MAs and 2 LAs in surface water. 0.5 g·L−1 of Na2EDTA was added to reduce the chelation effect of metal cations. Then antibiotics were extracted by Oasis HLB solid-phase extraction columns, eluted with 1% formic acid in methanol, and analyzed using UPLC-MS/MS under a multiple reaction monitoring (MRM) mode. Methanol and 0.1% formic acid in water were used as mobile phases. MS fragmentation patterns were studied to determine the qualitative and quantitative ion pairs. The results showed that the average recovery rates of target antibiotics in surface water ranged from 77% to 114%. The detection limit of the method was mostly in the range of 0.004—0.06 ng·L−1. This method was applied to 35 water samples from Beiyun River and Yongding River in Beijing, and 8 MAs and 2 LAs were detected with concentrations ranging from 0.01 ng·L−1 to 71 ng·L−1. Overall, the concentration level of antibiotics in the Beiyun River is higher than that of the Yongding River, and the effluent from the sewage treatment plant upstream of the Beiyun River may be an important source. The composition of antibiotics detected in the two rivers were also quite different, mainly dehydrated erythromycin A and roxithromycin in the Beiyun River, and dehydrated erythromycin A in the Yongding River. N-demethylerythromycin A was detected for the first time, and in addition, spiramycin, midecamycin, lincomycin, and chloramphenicol were generally detected.
-
Key words:
- emerging contaminants /
- antibiotics /
- macrolides /
- lincosamides /
- UPLC-MS/MS /
- surface water.
-
表 1 16种大环内酯类和林可酰胺类抗生素的质谱参数
Table 1. MS parameters of 16 macrolides and lincosamides.
中文名称
Chinese Name英文名称
Compounds内标
Internal standard仪器检出限/(μg·L−1)
Instrument detection limit质谱多反应监测
MRM碰撞能量/eV
CE锥孔电压/V
Cone林可霉素 Lincomycin 林可霉素-d3 0.014 407>126
407>35924
1820
20新螺旋霉I Neo Spiramycin I 螺旋霉素-d3 1.8 699>174
699>14218
2860
60螺旋霉素 Spiramycin 螺旋霉素-d3 0.15 439>174
439>10120
2225
25阿奇霉素 Azitromvcin 替米考星-d3 0.24 749>116
749>15850
5215
15替米考星 Tilmicosin 替米考星-d3 0.23 869>174
869>9848
5042
40竹桃霉素 Oleandomycin 氯林可霉素-d3 0.07 688>158
688>54428
1816
16氯林可霉素 Clindamycin 氯林可霉素-d3 0.014 429>377
429>12628
1830
28吉他霉素 Kitasamycin 替米考星-d3 0.15 805>109
805>17438
3542
38泰乐菌素 Tylosin 泰乐菌素-d3 0.12 916>174
916>8864
3610
10红霉素 Erythromycin 红霉素-d3 0.014 734>158
734>8350
3222
22N-去甲基红霉素A N-Desmethyl Erythromycin A 红霉素-d3 0.04 720>144
720>8346
3036
30琥乙红霉素 Erythromycin Ethyl Succinate 红霉素-d3 0.46 862>174
862>8346
2834
34交沙霉素 Josamycin 氯林可霉素-d3 0.036 828>109
828>17444
3256
56罗红霉素 Roxithromycin 罗红霉素-d7 0.06 873>158
873>67934
2224
30脱水红霉A Anhydroerythromycin A 红霉素-d3 0.16 726>158
726>8335
3320
20麦迪霉素 Medemycin 红霉素-d3 0.025 814>109
814>17442
3240
40表 2 16种MAs和LAs的方法检出限和加标回收率
Table 2. Limit of detection limit and recovery of 16 MAs and LAs
序号 抗生素
Antibiotics线性回归方程
Regression equationR2 方法检出限/(ng·L−1)
Limit of detection回收率/%
RecoveryRSD/% 1 林可霉素 y =1.19 x -0.304 0.999 0.004 103 9.7 2 新螺旋霉I y =0.15 x -0.057 0.993 0.500 110 15 3 螺旋霉素 y =2.89 x +0.867 0.992 0.032 77 5.7 4 阿奇霉素 y =7.68 x -2.345 0.998 0.060 95 15 5 替米考星 y =0.61 x -0.163 0.998 0.058 91 7.8 6 竹桃霉素 y =0.28 x -0.091 0.999 0.018 114 7.4 7 氯林可霉素 y =0.09 x -0.003 0.997 0.004 85 3.6 8 吉他霉素 y =1.02 x -0.295 0.998 0.034 92 9.7 9 泰乐菌素 y =1.19 x -0.326 0.996 0.030 109 1.2 10 红霉素 y =8.84 x +0.760 0.998 0.004 106 5.6 11 N-去甲基红霉素A y =2.39 x +0.501 0.996 0.010 107 6.8 12 琥乙红霉素 y =0.30 x -0.108 0.997 0.100 95 6.9 13 交沙霉素 y =3.29 x -1.254 0.999 0.008 84 9.6 14 罗红霉素 y =3.21 x -0.737 0.999 0.014 103 13 15 脱水红霉素A y =2.64 x +2.930 0.998 0.036 78 2.7 16 麦迪霉素 y =4.86 x -1.670 0.996 0.006 83 13 -
[1] HERNÁNDEZ F, SANCHO J V, IBÁÑEZ M, et al. Antibiotic residue determination in environmental waters by LC-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(6): 466-485. doi: 10.1016/j.trac.2007.01.012 [2] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [3] LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5): 1827-1833. [4] PENG X Z, ZHANG K, TANG C M, et al. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China[J]. Journal of Environmental Monitoring:JEM, 2011, 13(2): 446-454. doi: 10.1039/C0EM00394H [5] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2011, 46(3): 272-280. [6] 谭芳, 孙凯, 宋威, 等. SPE-HPLC法测定环境水样中3种痕量抗生素的含量[J]. 江汉大学学报(自然科学版), 2017, 45(3): 209-213. TAN F, SUN K, SONG W, et al. Determination of three antibiotics residue in environmental water samples with SPE-HPLC[J]. Journal of Jianghan University Natural Science Edition, 2017, 45(3): 209-213 (in Chinese).
[7] HU Y, ZHU Q Q, WANG Y W, et al. A short review of human exposure to antibiotics based on urinary biomonitoring[J]. Science of the Total Environment, 2022, 830: 154775. doi: 10.1016/j.scitotenv.2022.154775 [8] DRAISCI R, PALLESCHI L, FERRETTI E, et al. Confirmatory method for macrolide residues in bovine tissues by micro-liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 926(1): 97-104. doi: 10.1016/S0021-9673(01)00838-X [9] 朱松梅, 方政, 董玉瑛. 3种大环内酯类抗生素对海洋发光菌的毒性作用[J]. 环境监控与预警, 2020, 12(5): 112-116. ZHU S M, FANG Z, DONG Y Y. Toxicity of three macrolide antibiotics to marine Photobacterium phosphoreum[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 112-116(in Chinese).
[10] 岳振峰, 陈小霞, 谢丽琪, 等. 高效液相色谱串联质谱法测定动物组织中林可酰胺类和大环内酯类抗生素残留[J]. 分析化学, 2007, 35(9): 1290-1294. doi: 10.3321/j.issn:0253-3820.2007.09.010 YUE Z F, CHEN X X, XIE L Q, et al. Determination of residues of lincosamides and macrolides in animal tissue by high performance liquid chromatography tandem electrospray mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2007, 35(9): 1290-1294(in Chinese). doi: 10.3321/j.issn:0253-3820.2007.09.010
[11] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7): 1491-1500. doi: 10.7524/j.issn.0254-6108.2017112003 ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environmental Chemistry, 2018, 37(7): 1491-1500 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017112003
[12] WANG J. Determination of five macrolide antibiotic residues in honey by LC-ESI-MS and LC-ESI-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2004, 52(2): 171-181. doi: 10.1021/jf034823u [13] 吴明媛, 余焘, 谢宗升, 等. 液相色谱-四极杆/静电场轨道阱高分辨质谱法快速筛查海水中大环内酯类抗生素[J]. 理化检验-化学分册, 2021, 57(5): 444-449. WU M Y, YU T, XIE Z S, et al. Rapid screening of macrolide antibiotics in seawater by liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(5): 444-449 (in Chinese).
[14] 王明娟, 胡昌勤. 采用串联质谱法建立大环内酯类抗生素杂质谱的思路[J]. 药学学报, 2013, 48(5): 642-647. WANG M J, HU C. Impurity profiling of macrolide antibiotics by liquid chromatography-mass spectrometry[J]. Acta Pharmaceutica Sinica, 2013, 48(5): 642-647 (in Chinese).
[15] 仲伶俐, 郑幸果, 赵珊, 等. 超高效液相色谱-串联质谱法测定沼液中的林可霉素和大环内酯类抗生素[J]. 分析科学学报, 2021, 37(1): 57-62. ZHONG L L, ZHENG X G, ZHAO S, et al. Determination of lincomycin and macrolide antibiotics in biogas slurry by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science, 2021, 37(1): 57-62(in Chinese).
[16] HU F Y, HE L M, YANG J W, et al. Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC–MS/MS[J]. Journal of Chromatography B, 2014, 949/950: 79-86. doi: 10.1016/j.jchromb.2014.01.008 [17] 章琴琴, 汪昆平, 杨林, 等. 基于液相色谱法分析水环境中大环内酯类抗生素污染的研究进展[J]. 环境化学, 2012, 31(11): 1787-1796. ZHANG Q Q, WANG K P, YANG L, et al. Determination of macrolide antibiotic residues in water environment based on the liquid chromatography: A review[J]. Environmental Chemistry, 2012, 31(11): 1787-1796 (in Chinese).
[18] PLEASANCE S, KELLY J, LEBLANC M D, et al. Determination of erythromycin A in salmon tissue by liquid chromatography with ionspray mass spectrometry[J]. Biological Mass Spectrometry, 1992, 21(12): 675-687. doi: 10.1002/bms.1200211210 [19] 李涛, 王策, 徐兆安, 等. 基于分散固相萃取-超高效液相色谱串联质谱法测定沉积物中大环内酯类抗生素[J]. 环境化学, 2022, 41(1): 231-240. doi: 10.7524/j.issn.0254-6108.2020081601 LI T, WANG C, XU Z A, et al. Determination of macrolide antibiotics in the sediment based on dispersed solid-phase extraction coupled with ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Chemistry, 2022, 41(1): 231-240 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020081601
[20] HU C, ZHANG Y, ZHOU Y, et al. A review of pretreatment and analysis of macrolides in food (Update Since 2010)[J]. Journal of Chromatography A, 2020, 1634: 461662. doi: 10.1016/j.chroma.2020.461662 [21] 徐洁, 邓超, 鲜啟鸣. 固相萃取-高效液相色谱-串联质谱测定水中5种大环内酯类抗生素[J]. 中国测试, 2017, 43(3): 58-62 doi: 10.11857/j.issn.1674-5124.2017.03.012 XU J, DENG C, XIAN Q M. Simultaneous determination of 5 macrolides antibiotics in natural water samples using solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. China Measurement & Testing Technology, 2017, 43(3): 58-62(in Chinese) doi: 10.11857/j.issn.1674-5124.2017.03.012
[22] DEUBEL A, FANDIÑO A S, SÖRGEL F, et al. Determination of erythromycin and related substances in commercial samples using liquid chromatography/ion trap mass spectrometry[J]. Journal of Chromatography A, 2006, 1136(1): 39-47. doi: 10.1016/j.chroma.2006.09.057 [23] 李一阳, 杨默远. 北京市永定河与潮白河流域生态补水特征对比分析[J]. 北京水务, 2021(增刊01): 33-38. LI Y Y, YANG M Y. Contrastive analysis on the water supplement characteristic of Yongding River and Chaobai River in Beijing[J]. Beijing Water, 2021(S01): 33-38 (in Chinese).
[24] 杨肖肖, 张昱, 李久义, 等. 再生水回用的环境系统中抗生素、抗药菌与抗性基因分布的研究进展[J]. 生态毒理学报, 2020, 15(6): 43-56 doi: 10.7524/AJE.1673-5897.20190531001 YANG X X, ZHANG Y, LI J Y, et al. Distribution of antibiotics, antibiotic resistant bacteria, antibiotic re-sistance genes in environmental system with reclaimed water irrigation: A review[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 43-56(in Chinese) doi: 10.7524/AJE.1673-5897.20190531001
[25] WANG F H, QIAO M, LV Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. Environmental Pollution, 2014, 184: 247-253. doi: 10.1016/j.envpol.2013.08.038