-
生态环境部2023年3月28日的新闻发布会报道,2013年至2022年我国PM2.5实现了“十连降”。尽管浓度下降了57%,但受气象条件不利和污染排放增加的双重压力影响,我国大气污染防治的长期性、复杂性、艰巨性依然存在。如2021年,全国以PM2.5为首要污染物的超标天数仍然高于其他各项污染物。PM2.5具有粒径小、比表面积大等特点,易于吸附携带多种污染物,并能穿透肺部沉积在肺泡上,对人体健康带来威胁[1 − 3]。PM2.5的环境效应及其对公共卫生的影响在很大程度上受控于其化学组分及丰度[4]。我国居民死亡的主要原因是中风、缺血性心脏病和慢性阻塞性肺病,而环境中PM污染是导致这些疾病的第四大危险因素[5]。金属元素作为PM2.5的重要组成部分,具有来源广、易富集、不易去除等特点,且易与其他污染物发生协同作用,甚至致畸致癌。例如,Co、As、Cr(Ⅵ)、Pb、Cd、Se和Ni等微量元素被认为是致癌物;Cu、Fe、Cr、V等具有多种氧化态,可催化生物系统中活性氧(ROS)的产生,进而造成细胞内蛋白质和DNA的氧化损伤[6]。因此,除PM2.5作为首要污染物导致的大气环境质量下降外,PM2.5中金属元素的组成、丰度、来源、季节特征及其健康风险等也应得到更多关注。
大气颗粒物中金属元素的自然来源包括扬尘、植物碎屑、森林火灾和海底火山喷发,而主要的人为来源是交通源(尾气排放和非尾气排放,如道路灰尘和刹车片磨损)、燃烧源(如化石燃料、生物质和石油)以及工业排放(如金属冶炼、水泥制造)[7 − 9]。由于人类活动及排放强度的差异,不同地区大气颗粒物中重金属的污染特征及时空分布也存在显著差异。研究表明,中国27个主要城市PM2.5中重金属元素的时空分布总体上呈北方高于南方的趋势,且华北和西北地区污染相对较重[10];济南市工业场地和城市场地站点PM2.5样本中11种金属元素的对比研究显示,工业场地站点的金属元素总质量浓度(4.03 μg·m−3)是城市场地站点的1.7倍[11];美国新泽西州东卢瑟福收费公路附近PM2.5的分析表明,工作日样品中所有微量元素的浓度均高于周末,白天的样品中大部分元素浓度高于晚上,且冬季更明显[12].
我国“十四五”规划纲要要求推动城市群一体化发展,以促进城市群发展为抓手,全面形成“两横三纵”城镇化战略格局,培育发展呼包鄂榆等城市群,统筹推进生态共建环境共治,构筑生态和安全屏障,实现经济高质量发展和生态环境高水平保护。呼和浩特市、包头市、巴彦淖尔市均为我国西北部典型的以煤炭供能为主的资源依赖型城市,季节性煤烟型大气污染问题突出。目前,有关干旱半干旱西北欠发达地区大气细颗粒物金属污染及其健康风险方面的研究区较少。本文以呼和浩特市、包头市、巴彦淖尔市为研究区,针对不同季节不同大气环境质量特征,分析了3个城市PM2.5中金属元素的种类、丰度及时空分布等地球化学特征,解析了其潜在来源,评估了PM2.5中Be、Na、Mg、Al、K、Ca、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、As、Sr、Ag、Cd、Sn、Sb、Ba、Pb等22种重金属元素的健康风险,对典型燃煤供能主导的城市大气PM2.5中金属元素的环境地球化学行为效应研究具有重要的资料价值,也可为区域大气污染联防联控联治,以及促进大气污染防治工作机制向健康风险管理倾斜提供科学依据。
内蒙古自治区PM2.5中金属元素的地球化学特征及其健康风险
Geochemical characteristics and health risks of metal elements in PM2.5 from Inner Mongolia Autonomous Region
-
摘要: PM2.5的环境效应在很大程度上受控于其化学组分和丰度. 本文以煤炭供能为主的资源依赖型城市呼和浩特市、包头市、巴彦淖尔市为研究对象,开展不同季节不同大气环境质量条件下PM2.5中金属元素的地球化学特征、来源解析及健康风险研究. 结果表明,3个城市PM2.5中金属元素含量均具有采暖季高于非采暖季的季节性特征,采暖季呼和浩特、包头和巴彦淖尔分别为(
1128 ±1.19)、(1787 ±1.86)、(1069 ±1.44) ng·m−3,非采暖季分别为(274±17.6)、(214.3±10.5)、(168.2±15.0) ng·m−3,采暖季PM2.5中金属元素的昼夜变化特征表现为“夜晚>白天”;不同环境空气质量状况下,PM2.5中金属元素的浓度有沙尘天>污染天>清洁天的规律;沙尘时段内,Al、Ca、Fe等地壳元素的浓度均显著升高;污染时段内,Sb、Pb等以人为排放为主的元素浓度显著升高;受城市功能和发展的差异性影响,3个城市中呼和浩特市燃烧源和机动车排放贡献最大,包头市工业源贡献较大,而巴彦淖尔市生物质燃烧源贡献较大;研究区三个城市采暖季和非采暖季PM2.5中金属元素经呼吸吸入途径对人体产生的致癌风险和非致癌风险均处于可接受水平. 本研究对典型燃煤供能主导的城市大气PM2.5中金属元素的环境地球化学行为效应研究具有重要的资料价值,也可为区域大气污染防治提供了一定科学依据.Abstract: The environmental impacts of PM2.5 are largely controlled by its chemical composition and abundance. In this study, 3 resource-dependent cities were selected (Hohhot, Baotou, and Bayannur) to investigate the geochemical characteristics, source apportionment and health risks of metal elements in PM2.5 under different seasons and atmospheric environmental conditions. The results showed that, the metal element content in PM2.5 exhibited significant higher in the heating season than the non-heating season in Hohhot, Baotou and Bayannur ,with the heating season concentration of (1128 ±1.19), (1787 ±1.86), and (1069 ±1.44) ng·m−3, respectively and the non-heating season of (274±17.6), (214.3±10.5), and (168.2±15.0) ng·m−3, respectively. Concentrations of metal elements were lower during daylight basically than nightfall. Under different environmental air quality conditions, dust storm periods always associated with highest metal elements in PM2.5, followed by polluted days and clean days. During the dust storm season, the concentrations of crustal elements such as Al, Ca, and Fe all increased significantly and similarity to characteristics of crustal element, while during the pollution season, the concentrations of human-emitted elements such as Sb and Pb increased significantly. Due to differences in urban functions and development, the contribution of combustion sources and motor vehicle emissions was highest in Hohhot, industrial sources contributed most in Baotou, and biomass burning sources contributed most in Bayannur. The carcinogenic and non-carcinogenic risks associated with metal elements in PM2.5 during the heating and non-heating season were found to be at acceptable levels for human inhalation. This study provides important data for investigating the environmental geochemical behavior of metal elements in PM2.5 in typical coal-dominant cities and provides a scientific basis for regional air pollution prevention and control.-
Key words:
- metal elements /
- PM2.5 /
- geochemical characteristics /
- source apportionment /
- health risks
-
表 1 采样点位基本信息
Table 1. Information of sampling site
城市
City点位编号
Number采样点位
Sites区/县
Country呼和浩特 1 内蒙古自治区生态环境厅(HBT) 赛罕区 2 化肥厂生活区(HFC) 赛罕区 3 红旗小学(HQXX) 回民区 4 小召(XZ) 玉泉区 5 南湖湿地公园(NH) 玉泉区 6 内蒙古工业大学(GYDX) 新城区 7 内蒙古工业大学(金川校区)(JCGD) 土默特左旗 8 托克托县(TX) 传输监控点1 包头 9 昆区政府(KQZF) 昆都仑区 10 青山宾馆(QSBG) 青山区 11 包头八中(BTBZ) 东河区 12 滨河大厦(BHDS) 九原区 13 内蒙古科技大学(KJDX) 昆都仑区 14 包头环境局(BTHB) 九原区 15 萨拉齐(SLQ) 传输监控点2 巴彦淖尔 16 市环保大楼(HBDL) 临河区 17 临河附中(LHFZ) 临河区 18 乌拉特前旗(WLT) 传输监控点3 表 2 不同人群健康风险暴露参数取值[14]
Table 2. Value of health risk exposure parameters for different populations
暴露参数
Exposure parameters不同人群
Categories成年人
Adult儿童
ChildrenET 8 6 EF 180 180 ED 24 6 ATinh致癌 70×365×24 70×365×24 ATinh非致癌 ED×365×24 ED×365×24 表 3 污染物经呼吸吸入途径的暴露参数[15]
Table 3. Exposure parameters of pollutants through inhalation route
污染物
PollutantsRfC IUR Al 5×10−3 — V 1×10−4 8.3×10−3 Mn 5×10−5 — Co 6×10−6 9×10−3 Ni 9×10−5 2.6×10−4 As 1.5×10−5 4.3×10−3 Cd 1×10−5 1.8×10−3 Sb 3×10−4 — Ba 5×10−4 — Pb — 1.2×10−8 “—”无数据 表 4 PM2.5中金属元素浓度
Table 4. Concentrations of metal elements in PM2.5
呼和浩特
Hohhot包头
Baotou巴彦淖尔
Bayannur采暖季
Heating非采暖季
Non-heating采暖季
Heating非采暖季
Non-heating采暖季
Heating非采暖季
Non-heating浓度/
(ng· m−3)占比/
%浓度/
(ng· m−3)占比/
%浓度/
(ng· m−3)占比/
%浓度/
(ng· m−3)占比/
%浓度/
(ng· m−3)占比/
%浓度/
(ng· m−3)占比/
%Be 0.003± 0.0008 0.00 — 0 0.63±0.62 0.032 — 0 0.001± 0.0002 0 — 0 Na 203.7±15.04 14.9 66.16±9.69 24.8 280.82±17.85 14.1 32.83±3.36 15.7 203.28±45.62 16.9 17.46±3.26 10.8 Mg 195.88±12.35 14.3 28.08±4.51 10.6 283.66±20.62 14.2 37.40±3.72 17.9 190.03±26.62 15.8 21.90±4.30 13.5 Al 187±17.37 13.7 68.85±22.56 25.8 240.75±17.94 12.1 36.58±4.28 17.5 143.75±19.16 12.0 21.96±6.06 13.5 K 194.81±19.32 14.2 13.30±2.42 5.00 250.37±21.76 12.6 23.99±3.13 11.5 143.33±24.38 11.9 20.50±3.47 12.6 Ca 312.02±19.41 22.8 58.84±20.14 22.1 461.18±36.17 23.2 42.09±4.17 20.2 294.97±54.12 24.6 42.05±9.11 25.9 Ti 5.74±0.35 0.420 0.74±0.14 0.279 7.7±0.57 0.387 0.42±0.04 0.204 4.42±0.83 0.369 0.35±0.08 0.220 V 0.83±0.05 0.061 3.50±0.55 1.32 1.28±0.06 0.065 2.13±0.22 1.03 0.77±0.08 0.065 1.87±0.16 1.16 Mn 10.92±2.55 0.798 0.67±0.15 0.252 17.97±1.45 0.903 0.03±0.01 0.018 6.15±0.88 0.513 — 0 Fe 214.56±12.87 15.7 18.52±2.24 6.95 376.49±26.53 18.9 24.35±3.15 11.7 179.41±25.93 14.6 30.59±5.02 18.8 Co 0.12±0.01 0.009 — 0.003 0.17±0.01 0.009 — 0 0.15±0.04 0.013 — 0.004 Ni 1.73±0.62 0.13 0.43±0.09 0.165 1.17±0.11 0.059 0.34±0.10 0.167 0.77±0.19 0.065 0.35±0.19 0.216 Cu 2.67±0.27 0.195 0.59±0.08 0.224 3.48±0.29 0.175 0.34±0.06 0.168 1.14±0.19 0.095 0.06±0.02 0.039 Zn 9.56±0.76 0.699 1.74±0.56 0.656 21.79±2.26 1.09 3.04±0.5 1.46 7.75±1.41 0.646 2.39±0.39 1.48 As 1.63±0.14 0.120 1.06±0.16 0.401 2.79±0.2 0.14 1.92±0.22 0.922 1.17±0.15 0.098 0.45±0.06 0.281 Sr 2.77±0.16 0.202 0.06±0.01 0.024 3.4±0.23 0.171 0.25±0.03 0.122 2.48±0.47 0.207 0.21±0.03 0.131 Ag 0.12±0.04 0.009 0.16±0.14 0.063 1±0.27 0.050 0.15±0.03 0.074 0.88±0.49 0.074 0.10±0.09 0.066 Cd 0.36±0.05 0.027 0.02±0.01 0.008 0.52±0.04 0.026 0.01±0.00 0.006 0.35±0.07 0.029 — 0.002 Sn 11.37±1.92 0.831 3.21±0.29 1.21 14.48±1.53 0.727 2.18±0.19 1.05 11.77±2.22 0.981 1.76±0.52 1.087 Sb 0.78±0.11 0.057 0.03±0.004 0.014 0.6±0.06 0.031 0.02±0.004 0.013 0.24±0.04 0.020 — 0 Ba 5.36±0.43 0.392 0.04±0.02 0.015 6.43±0.45 0.323 0.01±0.01 0.005 2.75±0.37 0.229 — 0.002 Pb 6.71±0.57 0.491 0.32±0.03 0.122 14.15±1.12 0.711 0.36±0.07 0.174 4.43±0.82 0.369 0.32±0.08 0.202 Total 1128 ±1.19100 274.5±17.6 100 1787 ±1.86100 214.3±10.51 100 1069 ±1.44100 168.2±15.0 100 PM2.5/
(μg·m−3)43.81±25.25 12.09±3.35 39.00±23.20 15.32±3.94 31.92±22.88 12.76±2.93 注:“—”表明未检出. 表 5 不同城市PM2.5中金属元素浓度对比(ng·m−3)
Table 5. Comparison of Metal Element Concentrations in PM2.5 in different Cities(ng·m−3)
城市City 时间
TimeBe Na Mg Al K Ca Ti V Mn Fe Co Ni Cu Zn As Sr Ag Cd Sn Sb Ba Pb 文献 呼和浩特 2021.01 0.00 204 196 187 195 312 5.7 0.83 10.9 215 0.12 1.7 2.7 9.6 1.6 2.8 0.12 0.36 11.4 0.78 5.4 6.7 本
研
究2021.07 — 66.2 28.1 68.9 13.3 58.8 0.7 3.5 0.67 18.5 — 0.43 0.59 1.7 1.1 0.06 0.16 0.02 3.2 0.03 0.04 0.32 包头 2021.01 0.63 281 284 241 250 461 7.7 1.3 18.0 376 0.17 1.2 3.5 21.8 2.8 3.4 1.00 0.52 14.5 0.60 6.4 14.2 2021.07 — 32.8 37.4 36.6 24.0 42.1 0.4 2.1 0.03 24.4 — 0.34 0.34 3.0 1.9 0.25 0.15 0.01 2.2 0.02 0.01 0.36 巴彦淖尔 2021.01 0.00 203 190 144 143 295 4.4 0.77 6.1 179 0.15 0.77 1.1 7.8 1.2 2.5 0.88 0.35 11.8 0.24 2.8 4.4 2021.07 — 17.5 21.9 22.0 20.5 42.1 0.4 1.9 — 30.6 — 0.35 0.06 2.4 0.45 0.21 0.1 — 1.8 — — 0.32 北京 2016.06 -2017.05 — — — — 900 493 — — 37 738 — 1.6 32 174 11 — — — — — 73 65 [34] 天津 2018冬 0.02 331 119 162 880 217 5.5 0.8 23.3 310 0.2 1.6 19.4 145 4.6 5.9 0.2 1 3.7 3.9 21.1 113 [35] 2019夏 0.01 70.2 17.2 27.8 89.9 74 1.4 2 8.9 144 0.1 2 4.9 89.5 18.2 0.3 0.2 0.3 1 1 1.6 30.3 保定 2020冬 — — — — — — — 4 92 — 1 11 205 307 6 16 0.6 3 3 9 53 113 [36] 宝鸡 2019.12 — — — — 797 477 140 8 89 582 — 11 32 199 7 — — — — — 19 50 [13] 重庆 2015 — — — 429 718 824 46.5 — 37.7 586 — 4.2 11.3 113 — — — — — — — 50.3 [37] 上海 2019 — — — — 705.7 186.4 — 0.5 56.4 630.3 — 3.4 20.3 136.7 3.4 — 3.6 3.7 — — 23.3 35.2 [38] 厦门 2021 — — — 212 332 195 20 1.2 17.9 301 — 2.8 8.8 84.6 3.4 — — — 4.9 — 8 11.1 [39] 首尔
(韩国)2017.11 -2018.04 — — — — — — — — 25.8 661 — — 13.2 75.7 3.82 — — 0.69 — 2.08 — 21.8 [17] 博帕尔
(印度)2012-2013 — — — 1132 1015 396 43 5.3 18.3 484 2.4 3.2 18.5 246 2.2 12.3 — — — — — 66.1 [40] 达曼
(沙特阿拉伯)2018.01 — — — 2420 — — 76.6 8 25.6 1054 0.7 17 372 — 0.6 14.6 — — 27.3 5.5 20.9 30.8 [41] -
[1] LI P H, KONG S F, GENG C M, et al. Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places[J]. Aerosol and Air Quality Research, 2013, 13(1): 255-265. doi: 10.4209/aaqr.2012.04.0087 [2] YANG D, LIU Y, LIU S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China[J]. Chemosphere, 2020, 250: 126289. doi: 10.1016/j.chemosphere.2020.126289 [3] OGINAWATI K, SUSETYO S H, SULUNG G, et al. Investigation of dermal exposure to heavy metals (Cu, Zn, Ni, Al, Fe and Pb) in traditional batik industry workers[J]. Heliyon, 2022, 8(2): e08914. doi: 10.1016/j.heliyon.2022.e08914 [4] ZHU Y, HUANG L, LI J, et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017[J]. Environment International, 2018, 115: 343-357. doi: 10.1016/j.envint.2018.03.037 [5] YANG G, WANG Y, ZENG Y, et al. Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010[J]. The lancet, 2013, 381(9882): 1987-2015. doi: 10.1016/S0140-6736(13)61097-1 [6] RAI P, FURGER M, SLOWIK J G, et al. Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing[J]. Environmental Pollution, 2021, 278: 116865. doi: 10.1016/j.envpol.2021.116865 [7] ALIAS N F, KHAN M F, SAIRI N A, et al. Characteristics, emission sources, and risk factors of heavy metals in PM2.5 from southern Malaysia[J]. ACS Earth and Space Chemistry, 2020, 4(8): 1309-1323. doi: 10.1021/acsearthspacechem.0c00103 [8] RABHA S, SUBRAMANYAM K S V, SAWANT S S, et al. Rare-earth elements and heavy metals in atmospheric particulate matter in an urban area[J]. ACS Earth and Space Chemistry, 2022, 6(7): 1725-1732. doi: 10.1021/acsearthspacechem.2c00009 [9] SOLEIMANI M, AMINI N, SADEGHIAN B, et al. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran[J]. Journal of Environmental Sciences, 2018, 72: 166-175. doi: 10.1016/j.jes.2018.01.002 [10] LI F, YAN J, WEI Y, ET AL. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management[J]. Journal of Cleaner Production, 2021, 286: 124967. doi: 10.1016/j.jclepro.2020.124967 [11] ZHOU S, YUAN Q, LI W, et al. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications[J]. Journal of Environmental Sciences, 2014, 26(1): 205-213. doi: 10.1016/S1001-0742(13)60399-X [12] XIA L, GAO Y. Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the U. S. east coast[J]. Atmospheric Pollution Research, 2011, 2(1): 34-44. doi: 10.5094/APR.2011.005 [13] LIU S, WU T, WANG Q, et al. High time-resolution source apportionment and health risk assessment for PM2.5-bound elements at an industrial city in northwest China[J]. Science of the Total Environment, 2023, 870: 161907. doi: 10.1016/j.scitotenv.2023.161907 [14] GUO F, TANG M, WANG X, et al. Characteristics, sources, and health risks of trace metals in PM2.5[J]. Atmospheric Environment, 2022, 289: 119314. doi: 10.1016/j.atmosenv.2022.119314 [15] FADEL M, LEDOUX F, AFIF C, et al. Human health risk assessment for PAHs, phthalates, elements, PCDD/Fs, and DL-PCBs in PM2.5 and for NMVOCs in two East-Mediterranean urban sites under industrial influence[J]. Atmospheric Pollution Research, 2022, 13(1): 101261. doi: 10.1016/j.apr.2021.101261 [16] 王显钦, 费学海, 杨员, 等. 贵阳市花溪城区PM2.5中重金属元素的污染特征、来源及健康风险评价[J]. 环境科学学报, 2023, 43(6): 110-118. WANG X Q, FEI X H, YANG Y, et al. Pollution characteristics, source apportionment and health risk assessment of heavy metal elements in PM2.5 collected in Huaxi urban areas, Guiyang[J]. Acta Scientiae Circumstantiae, 2023, 43(6): 110-118 (in Chinese).
[17] LEE S, HAN C, AHN J, et al. Characterization of trace elements and Pb isotopes in PM2.5 and isotopic source identification during haze episodes in Seoul, Korea[J]. Atmospheric Pollution Research, 2022, 13(6): 101442. doi: 10.1016/j.apr.2022.101442 [18] XU J, JIA C, YU H, et al. Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China[J]. Chemosphere, 2021, 272: 129632. doi: 10.1016/j.chemosphere.2021.129632 [19] PAN Y, WANG Y, SUN Y, et al. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport[J]. Science of the Total Environment, 2013, 461-462: 761-771. doi: 10.1016/j.scitotenv.2013.04.065 [20] 赵岩, 郭常来, 崔健, 等. 辽宁省锦州市北镇农业区土壤重金属分布特征、生态风险评价及源解析[J]. 中国地质, 2023:DOI:11.1167.P.20230313.20231251.20230002. ZHAO Y, GUO C L, CUI J, et al. Distribution characteristics, ecological risk assessment and source analysis of heavy metals in soil of Beizhen agricultural area, Jinzhou City, Liao Province [J]. Geology in China, 2023:DOI:11.1167.P.20230313.20231251.20230002 (in Chinese).
[21] 张凯欢. 喀什市沙尘天近地面PM2.5和PM10污染特征研究[D]: 乌鲁木齐:新疆农业大学, 2022. ZHANG K H. Study on the pollution characteristics of PM2.5 and PM10 on the ground in sandy days in Kashgar[D]. Urumqi: Xinjiang Agricultural University, 2021 (in Chinese).
[22] 徐静, 李杏茹, 张兰, 等. 北京城郊PM2.5中金属元素的污染特征及潜在生态风险评价[J]. 环境科学, 2019, 40(6): 2501-2509. XU J, LI X R, ZHANG L, et al. Concentration and ecological risk assessment of heavy metals in PM2.5 collected in urban and suburban areas of Beijing[J]. Environmental Science, 2019, 40(6): 2501-2509 (in Chinese).
[23] 乔宝文, 刘子锐, 胡波, 等. 北京冬季PM2.5中金属元素浓度特征和来源分析[J]. 环境科学, 2017, 38(3): 876-883. QIAO B W, LIU Z R, HU B, et al. Concentration characteristics and sources of trace metals in PM2.5 during wintertime in Beijing[J]. Environmental Science, 2017, 38(3): 876-883 (in Chinese).
[24] QI J, LIU X, YAO X, et al. The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China[J]. Atmospheric Chemistry and Physics, 2018, 18(2): 571-586. doi: 10.5194/acp-18-571-2018 [25] 刘庆阳, 刘艳菊, 赵强, 等. 2012年春季京津冀地区一次沙尘暴天气过程中颗粒物的污染特征分析[J]. 环境科学, 2014, 35(8): 2843-2850. LIU Q Y, LIU Y J, ZHAO Q, et al. Chemical characteristics in airborne particulate matter(PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China[J]. Environmental Science, 2014, 35(8): 2843-2850 (in Chinese).
[26] 刘志坚, 董元华, 张琇, 等. 卫宁平原农用地土壤重金属污染特征与生态风险研究[J]. 生态环境学报, 2022, 31(11): 2216-2224. LIU Z J, DONG Y H, ZHANG X, et al. Contamination and ecological risk assessment of heavy metals in the soil of agricultural land in Weining plain, northwest China[J]. Ecology and Environmental Sciences, 2022, 31(11): 2216-2224 (in Chinese).
[27] 张伟, 姬亚芹, 张军, 等. 辽宁省典型城市道路尘PM2.5成分谱研究[J]. 中国环境科学, 2018, 38(2): 412-417. ZHANG W, JI Y Q, ZHANG J, et al. Study on the road dust source profile of PM2.5 in Liaoning Province typical cities[J]. China Environmental Science, 2018, 38(2): 412-417 (in Chinese).
[28] 张笑辰, 刘煜, 张兴绘, 等. 江西省主要城市土壤重金属污染及风险评价[J]. 环境科学与技术, 2022, 45(8): 206-217. ZHANG X C, LIU Y, ZHANG X H, et al. Heavy metal pollution and risk assessment of top-soil in major cities of Jiangxi Province[J]. Environmental Science & Technology, 2022, 45(8): 206-217 (in Chinese).
[29] 高飞, 曹磊, 王敏, 等. 十四运期间西安市PM2.5中无机元素的污染特征及来源解析[J]. 环境化学, 2023, 42(10): 3473-3486. doi: 10.7524/j.issn.0254-6108.2022042502 GAO F, CAO L, WANG M, et al. Pollution characteristics and source analysis of inorganic elements in PM2.5 in Xi 'an during The 14th National Games[J]. Environmental Chemistry, 2023, 42(10): 3473-3486 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022042502
[30] 雷淼, 马嘉晖, 杨璐平, 等. 不同空气质量下河南主要城市冬季PM2.5中重金属污染特征、来源解析及健康风险评价[J]. 环境化学, 2024, 43(1):275-286. LEI M, MA J H, YANG L P, et al. Pollution characterization, source identification and health risk assessment of PM2.5-bound metals in main cities of henan province in winter under different air quality levels[J]. Environmental Chemistry, 2024, 43(1):275-286 (in Chinese).
[31] 陈倩, 谢青, 李游镒, 等. 三峡库区一种外来鱼类(短颌鲚)重金属累积特征及来源解析[J]. 中国环境科学, 2023,43(8):4360-4369. CHEN Q, XIE Q, LI Y Y, et al. Accumulation and sources assessment of heavy metals of a non-native fish (Coilia nasus) in the Three Gorges Reservoir area[J]. China Environmental Science, 2023,43(8):4360-4369(in Chinese).
[32] 张军, 李旭, 刘磊玉, 等. 某燃煤电厂周边农田土壤重金属污染特征及源解析[J]. 环境科学, 2023, 44(12): 6921-6932. ZHANG J, LI X, LIU L Y, et al. Characteristics and source analysis of heavy metal pollution in farmland around a coal-fired power plant[J]. Environmental Science, 2023, 44(12): 6921-6932(in Chinese).
[33] 张璐涵, 庄富起, 杜妍慧, 等. 2019年山东省德州市和济南市PM2.5中金属污染特征及健康风险评估[J]. 环境卫生学杂志, 2022, 12(11): 825-833. ZHANG L H, ZHUANG F Q, DU Y H, et al. Pollution characteristics of metals in PM2.5 and their health risk assessment in Dezhou and Jinan of Shandong Province, China, 2019[J]. Journal of Environmental Hygiene, 2022, 12(11): 825-833 (in Chinese).
[34] CUI Y, JI D, HE J, et al. In situ continuous observation of hourly elements in PM2.5 in urban beijing, China: Occurrence levels, temporal variation, potential source regions and health risks[J]. Atmospheric Environment, 2020, 222: 117164. doi: 10.1016/j.atmosenv.2019.117164 [35] ZHAO X, XU Z, LI P, et al. Characteristics and seasonality of trace elements in fine aerosols from Tianjin, North China during 2018-2019[J]. Environmental Advances, 2022, 9: 100263. doi: 10.1016/j.envadv.2022.100263 [36] SHEN Y W, ZHAO H, ZHAO C X, et al. Temporal responses of PM2.5-bound trace elements and health risks to air control policy in a typical northern city in China during 2016–2020[J]. Journal of Cleaner Production, 2023, 408: 137165. doi: 10.1016/j.jclepro.2023.137165 [37] WANG H, QIAO B, ZHANG L, et al. Characteristics and sources of trace elements in PM2.5 in two megacities in Sichuan Basin of southwest China[J]. Environmental Pollution, 2018, 242: 1577-1586. doi: 10.1016/j.envpol.2018.07.125 [38] CHEN Y, YE X, YAO Y, et al. Characteristics and sources of PM2.5-bound elements in Shanghai during autumn and winter of 2019: Insight into the development of pollution episodes[J]. Science of the Total Environment, 2023, 881: 163432. doi: 10.1016/j.scitotenv.2023.163432 [39] LIN Z, FAN X, CHEN G, et al. Sources appointment and health risks of PM2.5-bound trace elements in a coastal city of southeastern China[J]. Journal of Environmental Sciences, 2024, 138: 561-571. doi: 10.1016/j.jes.2023.03.009 [40] NIRMALKAR J, HASWANI D, SINGH A, et al. Concentrations, transport characteristics, and health risks of PM2.5-bound trace elements over a national park in central India[J]. Journal of Environmental Management, 2021, 293: 112904. doi: 10.1016/j.jenvman.2021.112904 [41] ALWADEI M, SRIVASTAVA D, ALAM M S, et al. Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms[J]. Atmospheric Environment:X, 2022, 14: 100164. doi: 10.1016/j.aeaoa.2022.100164 [42] 魏复盛. 中国土壤元素背景值[M]. 北京:中国环境出版社, 1990. WEI F. Statistics of Chinese background soil elements[M]. Beijing:China Environmental Science Press, 1990 (in Chinese).
[43] VIANA M, KUHLBUSCH TAJ, QUEROL X, et al. Source apportionment of particulate matter in Europe: A review of methods and results[J]. Journal of Aerosol Science, 2008, 39(10): 827-849. doi: 10.1016/j.jaerosci.2008.05.007 [44] 陈培林, 郭蓉, 王勤耕. “大气十条”实施期间南京市PM2.5化学组成与来源的演变特征[J]. 环境科学, 2023, 44(1): 1-10. CHEN P L, GUO R, WANG Q G. Evolution of PM2.5 chemical composition and sources in Nanjing during the implementation of the APPCAP[J]. Environmental Science, 2023, 44(1): 1-10 (in Chinese).
[45] 古添发, 闫润华, 姚沛廷, 等. 深圳市大气中PM2.5载带金属污染特征及健康风险[J]. 中国环境科学, 2023, 43(1): 88-95. GU T F, YAN R H, YAO P T, et al. Characteristics and health risks of ambient PM2.5-bound metals in Shenzhen[J]. China Environmental Science, 2023, 43(1): 88-95 (in Chinese).
[46] 陆平, 赵雪艳, 殷宝辉, 等. 临沂市PM2.5和PM10中元素分布特征及来源解析[J]. 环境科学, 2020, 41(5): 2036-2043. LU P, ZHAO X Y, YIN B H, et al. Distribution characteristics and source apportionment of elements bonded with PM2.5 and PM10 in Linyi[J]. Environmental Science, 2020, 41(5): 2036-2043 (in Chinese).
[47] 陆平. 临沂市大气PM2.5和PM10中元素污染特征、来源及健康风险研究[D]: 天津:天津理工大学, 2020. LU P. Pollution characteristics, source and health risks of elements bonded with atmospheric PM2.5 and PM10 in Linyi city[D]. Tianjin:Tianjin: Tianjin University of Technology, 2020 (in Chinese).
[48] LV L, WEI P, HU J, et al. Source apportionment and regional transport of PM2.5 during haze episodes in Beijing combined with multiple models[J]. Atmospheric Research, 2022, 266: 105957. doi: 10.1016/j.atmosres.2021.105957 [49] 顾永正. 燃煤电厂大气重金属排放控制策略[J]. 中国电机工程学报, 2023, 43(15): 5955-5970. GU Y Z. Emission control strategies of atmospheric heavy metals for coal-fired power plants[J]. Proceedings of the CSEE, 2023, 43(15): 5955-5970 (in Chinese).
[50] 黄鹏程, 蔡飞飞, 吴天才, 等. 宁东能源化工基地燃煤电厂粉煤灰的矿物学及元素地球化学特征[J]. 洁净煤技术, 2023, 3: 145-152. HUANG P C, CAI F F, WU T C, et al. Mineralogical and geochemical characteristics of fly ash from coal-fired power plant in Ningdong Energy Chemical Industry Base [J]. Clean Coal Technology, 2024, 3:145-152(in Chinese) .
[51] 白雯宇, 徐勃, 郭丽瑶, 等. 淄博市冬季PM2.5载带金属元素污染特征、生态风险评价及来源分析[J]. 环境科学, 2022, 43(5): 2336-2342. BAI W Y, XU B, GUO L Y, et al. Characteristics, ecological risk assessment, and sources of the polluted metallic elements in PM2.5 during winter in Zibo city[J]. Environmental Science, 2022, 43(5): 2336-2342 (in Chinese).
[52] 余天智, 刘运涛, 曹地, 等. 沙颍河流域污染控制因素及水体重金属迁移规律研究[J]. 环境工程, 2023, 41(2): 30-36,52. YU T Z, LIU Y T, CAO D, et al. Study on pollution control factors and their influencing laws on heavy metal migration in the shaying river basin[J]. Environmental Engineering, 2023, 41(2): 30-36, 52 (in Chinese).
[53] 张春荣, 柏得植, 李少勇, 等. 石油化工业对周边土壤中金属元素的影响分析[J]. 环境监测管理与技术, 2023, 35(1): 68-71. ZHANG C R, BAI D Z, LI S Y, et al. Influence of petrochemical industry on metal elements in surrounding soil[J]. The Administration and Technique of Environmental Monitoring, 2023, 35(1): 68-71 (in Chinese).
[54] 张恬雨, 胡恭任, 于瑞莲, 等. 基于PMF模型的垃圾焚烧厂周边农田土壤重金属源解析[J]. 环境科学, 2022, 43(12): 5718-5727. ZHANG T Y, HU G R, YU R L, et al. Source analysis of heavy metals in farmland soil around a waste incineration plant based on PMF model[J]. Environmental Science, 2022, 43(12): 5718-5727 (in Chinese).
[55] 梁春丽, 龚山陵. 郑州市金水区冬季大气PM2.5污染特征及来源解析[J]. 环境保护科学, 2023, 49(1): 102-109, 144. LIANG C L, GONG S L. Pollution characteristics and source apportionment of ambient PM2.5 from Jinshui District of Zhengzhou in winter[J]. Environmental Protection Science, 2023, 49(1): 102-109, 144 (in Chinese).
[56] 姜伟, 吴星媛, 余克服, 等. 南海北部珊瑚钒的高分辨率记录及其对热带气旋和人类活动的响应[J]. 中国科学: 地球科学, 2022, 52(12): 2391-2402. JIANG W, WU X Y, YU K F, et al. Impacts of tropical cyclones and anthropogenic activities on marine vanadium: A unique perspective from high resolution Porites coral record. Science China Earth Sciences, 65(12): 2285–2296 (in Chinese).
[57] 林炳丞, 吴广龙, 郑明辉, 等. 再生铜冶炼过程中重金属排放特征和控制[J]. 环境科学, 2023, 44(3): 1678-1685. LIN B C, WU G L, ZHENG M H, et al. Emission characteristics and control of heavy metals in secondary copper smelting process[J]. Environmental Science, 2023, 44(3): 1678-1685 (in Chinese).
[58] 程凯, 常运华, 旷雅琼, 等. 上海市PM2.5中重金属元素对COVID-19控制的高频响应[J]. 环境科学, 2021, 42(8): 3644-3651. CHENG K, CHANG Y H, KUANG Y Q, et al. High-frequency responses to the COVID-19 shutdown of heavy metal elements in PM2.5 in Shanghai[J]. Environmental Science, 2021, 42(8): 3644-3651 (in Chinese).
[59] 许博, 徐晗, 赵焕, 等. 机器学习耦合受体模型揭示驱动因素对PM2.5的影响[J]. 环境科学研究, 2022, 35(11): 2425-2434. XU B, XU H, ZHAO H, et al. Machine learning coupled with receptor model to reveal the effect of driving factors on PM2.5[J]. Research of Environmental Sciences, 2022, 35(11): 2425-2434 (in Chinese).
[60] SI R, XIN J, ZHANG W, et al. Source apportionment and health risk assessment of trace elements in the heavy industry areas of Tangshan, China[J]. Air Quality, Atmosphere & Health, 2019, 12(11): 1303-1315. [61] BRUMBERG HL, KARR CJ, BOLE A, et al. Ambient air pollution: Health hazards to children[J]. Pediatrics, 2021, 147(6): e2021051484. doi: 10.1542/peds.2021-051484 [62] 陈瑞, 李拥军, 刘小云. 2015—2017年兰州大气PM2.5中10种元素的健康风险分析[J]. 环境与健康杂志, 2019, 36(5): 419-422. CHEN R, LI Y J, LIU X Y. Analysis on health risks of ten elements in ambient PM2.5 in Lanzhou during 2015—2017[J]. Journal of Environment and Health, 2019, 36(5): 419-422 (in Chinese).