-
饮用水水源地土壤环境质量事关饮用水安全和人民群众的身体健康. 然而,长期的工农业生产、生活废水排放和交通运输等活动释放的镉(Cd)、铬(Cr)和铅(Pb)等重金属元素以低浓度、持续性、直接或间接地排入饮用水水源地,导致水源地土壤重金属富集,从而引发水源地土壤重金属污染[1]. 由于土壤重金属污染具有生物蓄积性强、毒性持久、易迁移转化和不可逆转性等特点[2],不仅直接危害土壤生态系统,还可能通过地表径流或地下渗透等方式影响饮用水质量,进而威胁人类健康[3 − 4]. 为此,在把人民健康放在优先发展战略位置的政策背景下,定量描述和评估饮用水水源地土壤污染与人群健康风险对于推动落实“健康中国2035”战略和保障水源地生态环境安全具有重要的现实意义.
精准可靠的土壤重金属污染风险评估是土壤重金属污染风险管控与治理的关键基础. 当前,地累积指数法、污染因子法、富集因子法、生态风险指数法和人体健康风险评估模型等传统的污染评价方法和基于地累积指数或富集因子的改进内梅罗综合污染指数法已被广泛应用于评估工业场地、农用地和矿山/废渣场地等不同土地利用类型土壤重金属的污染程度及其对生态环境和人类健康的潜在影响[5 − 7]. 然而,以上方法往往依赖于区域土壤背景值、污染物毒性系数和暴露参数等固定输入值,而这些固定的参数值难以准确反映不同人群和环境中的变异性和不确定性,从而导致评估结果出现系统性偏高或偏低的状况[5,8 − 9]. 而概率评估方法通过处理和量化参数的不确定性,从而提高土壤重金属污染评估的准确性和可靠性[9 − 10]. 蒙特卡洛(Monte Carlo)模拟是一种常用的概率评估数值计算方法[11]. 耦合于土壤重金属污染风险评估方法的Monte Carlo模拟技术,通过生成大量随机样本来模拟和分析评估方法中固有参数的不确定性和变异性,从而提高评估结果的准确性和可靠性[6,12 − 13],已成功应用于工矿区、城市和农田等不同区域土壤或降尘重金属污染风险评估研究中[13 − 15]. 为此,基于Monte Carlo模拟的饮用水水源地土壤重金属污染风险评估可降低评估结果的不确定性,进而精准量化污染风险.
兰州城市生活饮用水水源地位于黄河兰州城区段上游的西固区境内,受西固区石油化工和重工业为主的消费结构及兰州沙尘和静稳等天气的影响[16 − 17],水源地水体和土壤环境质量备受学者的关注[18 − 20]. 鉴于此,本文以黄河兰州城区段生活饮用水水源地土壤为研究对象,分析水源地土壤pH及As、Cd、Cr、Cu、Hg、Ni、Pb和Zn共8项重金属的含量特征. 并在应用富集因子法、改进内梅罗综合污染指数法、改进生态风险指数法和人体健康风险评估模型的基础上,耦合Monte Carlo模拟技术,通过模拟土壤重金属污染评估参数的不确定性和变异性,系统量化和精细评估水源地土壤重金属污染特征、生态风险及其对人体健康的潜在风险. 在拓展土壤重金属污染研究广度的基础上,为兰州市城区饮用水水源地土壤污染风险精准管控和饮用水安全有效保障提供科学依据,对助推黄河兰州段生态保护和高质量发展具有重要的现实意义.
黄河兰州城区段饮用水源地土壤重金属污染生态与健康概率风险评估
Ecological and health probabilistic risk assessment of soil heavy metal pollution in the drinking-water source in the Lanzhou urban section of the Yellow River
-
摘要: 为探究黄河流域城市饮用水源地土壤重金属污染特征及其生态健康风险,以黄河兰州城区段饮用水源地土壤为研究对象,采集分析了39个土壤样品的pH值和As、Cd、Cr、Cu、Hg、Ni、Pb及Zn共8种重金属的含量特征,并将蒙特卡洛模拟耦合于富集因子法、改进内梅罗综合污染指数法、改进生态风险指数法和人体健康风险模型对黄河兰州城区段生活饮用水水源地的土壤重金属污染程度、生态风险及其对人类健康的潜在风险进行了全面概率评估. 结果表明:1)土壤重金属含量总体低于国家风险筛选标准,其中除Ni之外,分别有87%、74%、50%、47%、45%、32%和8%的样点Hg、Cu、Pb、Cd、Zn、As和Cr的含量高于甘肃省土壤背景值. 2)Hg的污染程度最高,其次是Pb、Cu、Zn、Cd、As,而Cr和Ni的污染程度相对较低. 土壤重金属污染整体上为中度富集状态. 3)Hg和Cd是构成水源地土壤生态风险的主要元素,其中Hg的生态风险最高,而其他元素主要处于轻微风险等级. 土壤生态风险整体上为较强水平. 4)土壤重金属对成人和儿童的非致癌风险较低,但在手口摄入途径下,As、Cr和Ni对两个人群均存在可接受的致癌风险,且儿童的健康风险高于成人.Abstract: To explore the characteristics of heavy metal pollution and its ecological health risks in the urban drinking water sources of the Yellow River Basin, this study focused on the soils from the drinking water source areas along the Lanzhou urban section of the Yellow River. Thirty-nine soil samples were collected and analyzed for pH values and the concentrations of eight heavy metals: As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The Monte Carlo simulation was coupled with the enrichment factor method, the improved Nemerow integrated pollution index method, the improved ecological risk index method, and the human health risk model to comprehensively assess the probability of soil heavy metal pollution, ecological risks, and potential risks to human health in the drinking water source areas of the Lanzhou urban section of the Yellow River. The results showed that: 1) The overall heavy metal content in the soil was below the national risk screening standards, except for Ni, with 87%, 74%, 50%, 47%, 45%, 32%, and 8% of the sample points having Hg, Cu, Pb, Cd, Zn, As, and Cr concentrations exceeding the soil background values of Gansu Province, respectively. 2) The highest pollution level was observed for Hg, followed by Pb, Cu, Zn, Cd, and As, while Cr and Ni had relatively lower pollution levels. Overall, the soil's heavy metals were in moderate enrichment. 3) Hg and Cd were the main elements contributing to the ecological risks of the water source area soils. Hg posed the highest ecological risk, while other elements were mainly at a slight risk level. The overall ecological risk of the soil was at a relatively high level. 4) The non-carcinogenic risks posed by soil heavy metals to adults and children were low. However, under the oral ingestion pathway, As, Cr, and Ni presented an acceptable carcinogenic risk to both populations, with children having a higher health risk than adults.
-
表 1 土壤重金属污染评价方法的分级标准
Table 1. Classification criteria for soil heavy metal pollution evaluation method
富集因子(EF) 数值范围
Value rangeEF<1 1≤EF<2 2≤EF<5 5≤EF<20 20≤EF<40 40≤EF 污染等级Pollution grade 无富集 轻微 中度 较重度 重度 极重度 内梅罗综合污染指数(NIEF) 数值范围
Value rangeNIEF<1 1≤NIEF<2 2≤NIEF<3 3≤NIEF<5 5≤NIEF<10 10≤NIEF 污染等级
Pollution grade无富集 轻微 中度 较重度 重度 极重度 生态风险指数(mEir) 数值范围
Value rangemEir<40 40≤mEir<80 80≤mEir<160 160≤mEir<320 320≤mEir — 污染等级
Pollution grade轻微 中等 较强 很强 极强 — 综合生态风险指数(mNIRI) 数值范围
Value rangemNIRI<40 40≤mNIRI<80 80≤mNIRI<160 160≤mNIRI<320 320≤mNIRI — 污染等级
Pollution grade轻微 中等 较强 很强 极强 — 注:“—”表示无相关内容或数据,下文同此. Note:“—” indicates no relevant content or data, the same applies below. 表 2 Monte Carlo模拟的概率健康风险模型的各参数含义及其参考值
Table 2. The meanings and reference values of parameters in a probabilistic health risk model using Monte Carlo simulation
暴露参数
Exposure parameter含义
Meaning概率分布
Probability distribution成人
Adults儿童
Children单位
Unit参考文献
ReferenceIngR 摄入速率 三角1) 66、103和161 4、30和52 mg·d−1 [30] InhR 吸入速率 对数正态2) 16.57和4.05 7.19和1.62 m3·d−1 [30] BW 平均体重 对数正态2) 55.7和68.6 37.0和2.98 kg [31 − 32] AT 平均暴露时间 点 非致癌(365×ED) d [33] 致癌(365×70) ED 暴露年限 点 24 6 y [33] EF 暴露频率 三角1) 180、345和365 d·a−1 [34] PEF 颗粒物释放因子 点 1.36×109 m3·kg−1 [33] SA 皮肤暴露面积 三角1) 0.076、0.153和0.382 0.043、0.086和0.216 m2 [35] ABS 皮肤吸收因子 点 0.03(As)、0.001(其它重金属) — [33] SAF 皮肤黏着度 对数正态2) 0.49和0.54 0.65和1.20 mg·cm−2·d−1 [36] 注:1)三角分布:最可能值(最小值,最大值);2)对数分布:平均值±标准差. Note: 1) Triangular distribution: Most probable value (Minimum, Maximum);2) Logarithmic distribution: Mean±Standard deviation. 表 3 不同暴露途径下重金属的参考剂量(RfD)和斜率因子(SF)
Table 3. Reference dose(RfD)and slope factor(SF)for soil heavy metals under different exposure pathways
元素
ElementRfD/(mg·kg−1·d−1) SF/(kg·d·mg−1) RfDing RfDinh RfDderm SFing SFinh SFderm As 3.0×10−4 1.23×10−4 3.0×10−4 1.5×100 15.1×100 3.66×100 Cd 1.0×10−3 1.0×10−3 1.0×10−5 6.1×100 6.3×100 — Cr 3.0×10−3 2.86×10−5 6.0×10−5 5×10−1 42×101 2.0×100 Cu 4.0×10−2 4.0×10−2 1.2×10−2 — — — Hg 1.6×10−4 8.60×10−5 3.0×10−4 — — — Ni 2.0×10−2 2.06×10−2 5.4×10−3 1.7×100 8.4×10−1 42.5×100 Pb 3.5×10−3 3.52×10−3 5.25×10−4 — — — Zn 3.0×10−1 3.0×10−1 6.0×10−2 — — — 表 4 黄河兰州城区段饮用水水源地土壤重金属描述性统计结果
Table 4. Descriptive statistical results of soil heavy metal contamination for the drinking-water source in the Lanzhou urban section of the Yellow River
项目
ItemAs Cd Cr Cu Hg Ni Pb Zn pH 水源地土壤
Water source soil最小值 8.67 0.08 43.95 17.86 0.002 15.56 13.79 47.8 7.63 最大值 17.76 0.28 90.75 147.9 0.35 31.76 90.63 310.8 9.13 平均值 12.16 0.13 61.05 30.7 0.075 22.79 24.94 85.21 8.18 标准差 1.86 0.04 7.14 20.23 0.078 3.02 15.35 46.45 0.345 变异系数 15.30 27.75 11.70 65.91 103.87 13.26 61.54 54.51 4.22 参考值
Reference value甘肃省土壤元素背景值[25] 12.60 0.12 70.20 24.10 0.02 35.20 18.80 68.50 — 农用地土壤污染筛选值[40] 25 0.6 250 100 3.4 190 170 300 >7.5 第二类建设用地风险筛选值[42] 60 65 — 18000 38 900 800 — — 注:变异系数单位为%,其余变量单位均为mg·kg−1.
Note: Coefficient of variation expressed in percentage (%), while the units for the other variables are mg·kg−1.表 5 Monte Carlo模拟的黄河兰州城区段饮用水水源地土壤重金属健康风险评价
Table 5. Health risk assessment of soil heavy metals in the drinking-water source in the Lanzhou urban section of the Yellow River using Monte Carlo simulation
元素
Element成人
Adults儿童
Children非致癌 Non-carcinogenic HQ手口摄入 HQ呼吸吸入 HQ皮肤接触 HI HQ手口摄入 HQ呼吸吸入 HQ皮肤接触 HI As 1.52×10−2 1.56×10−5 1.57×10−6 1.52×10−2 9.88×10−3 1.16×10−5 2.02×10−6 9.88×10−2 Cd 4.76×10−5 2.02×10−8 1.65×10−8 4.77×10−5 3.10×10−4 1.49×10−8 2.11×10−7 3.11×10−4 Cr 7.61×10−3 3.38×10−4 1.31×10−6 7.95×10−3 4.99×10−2 2.52×10−4 1.70×10−5 5.01×10−2 Cu 2.79×10−4 1.18×10−7 3.22×10−9 2.79×10−4 1.82×10−3 8.69×10−8 4.12×10−7 1.82×10−3 Hg 1.75×10−4 1.37×10−7 3.23×10−10 1.75×10−4 1.17×10−3 1.05×10−7 4.27×10−9 1.17×10−3 Ni 4.27×10−4 1.75×10−7 5.45×10−9 4.27×10−4 2.78×10−3 1.30×10−7 7.01×10−8 2.78×10−3 Pb 2.72×10−3 1.14×10−6 6.36×10−8 2.72×10−3 1.76×10−2 8.41×10−7 7.97×10−7 1.76×10−2 Zn 1.07×10−4 4.49×10−8 1.80×10−9 1.07×10−4 6.88×10−4 3.31×10−8 2.34×10−8 6.88×10−4 致癌 Carcinogenic CR手口摄入 CR呼吸吸入 CR皮肤接触 TCR CR手口摄入 CR呼吸吸入 CR皮肤接触 TCR As 2.34×10−6 9.95×10−9 5.92×10−10 2.35×10−6 3.81×10−6 1.85×10−9 1.90×10−10 3.81×10−6 Cd 9.96×10−8 4.35×10−11 — 9.96×10−8 1.62×10−7 8.07×10−12 — 1.62×10−7 Cr 3.91×10−6 1.39×10−7 5.39×10−11 4.05×10−6 6.41×10−6 2.59×10−8 1.75×10−10 6.44×10−6 Ni 4.97×10−6 1.04×10−9 4.29×10−10 4.97×10−6 8.09×10−6 1.92×10−10 1.38×10−9 8.09×10−6 -
[1] DING H J, TANG L, NIE Y N, et al. Characteristics and interactions of heavy metals with humic acid in gold mining area soil at a upstream of a metropolitan drinking water source[J]. Journal of Geochemical Exploration, 2019, 200: 266-275. doi: 10.1016/j.gexplo.2018.09.003 [2] ANAMAN R, PENG C, JIANG Z C, et al. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF[J]. Science of the Total Environment, 2022, 823: 153759. doi: 10.1016/j.scitotenv.2022.153759 [3] 姬超, 侯大伟, 谢丽, 等. 基于时间序列模型的饮用水源地重金属健康风险分析与预测[J]. 环境科学, 2021, 42(11): 5322-5332. JI C, HOU D W, XIE L, et al. Analysis and prediction of health risk from heavy metals in drinking water sources based on time series model[J]. Environmental Science, 2021, 42(11): 5322-5332 (in Chinese).
[4] CAO X H, LI W, SONG S, et al. Source apportionment and risk assessment of soil heavy metals around a key drinking water source area in northern China: multivariate statistical analysis approach[J]. Environmental Geochemistry and Health, 2023, 45(2): 343-357. doi: 10.1007/s10653-022-01251-7 [5] LU X W, WANG Z Z, CHEN Y R, et al. Source-specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation[J]. Journal of Environmental Management, 2023, 347: 119056. doi: 10.1016/j.jenvman.2023.119056 [6] 罗豪杰, 潘俊, 陈小霞, 等. 基于Monte-Carlo模拟的湖南省典型工厂周边农田土壤重金属区域潜在生态风险特征及来源解析[J]. 环境科学, 2024, 45(2): 1038-1048. LUO H J, PAN J, CHEN X X, et al. Potential ecological risk characteristics and source apportionment of heavy metals in farmland soils around typical factories in Hunan Province based on monte-carlo simulation[J]. Environmental Science, 2024, 45(2): 1038-1048 (in Chinese).
[7] LI J, LIU J Z, TAI X S, et al. Pollution and source-specific risk analysis of potentially toxic metals in urban soils of an oasis-tourist city in northwest China[J]. Environmental Geochemistry and Health, 2024, 46(2): 55. doi: 10.1007/s10653-023-01850-y [8] GUAN Q Y, LIU Z, SHAO W Y, et al. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical oasis city in Northwest China[J]. Science of the Total Environment, 2022, 833: 155096. doi: 10.1016/j.scitotenv.2022.155096 [9] 李旭, 李军, 李开明, 等. 基于蒙特卡洛模拟的兰州银滩湿地公园沉积物重金属污染特征及风险评价[J]. 环境化学, 2024, 43(7): 1111-1126. doi: 10.7524/j.issn.0254-6108.2023011301 LI X, LI J, LI K M, et al. Characteristics and risk assessment of heavy metals contamination in sediments from the Lanzhou Yintan wetland park based on Monte Carlo simulation model[J]. Environmental Chemistry, 2024, 43(7): 1111-1126 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023011301
[10] 杨湜烟, 刘杏梅, 徐建明. 土壤重金属污染健康风险评估新视角: 概率风险评估的源起及展望[J]. 土壤学报, 2022, 59(1): 28-37. doi: 10.11766/trxb202009120516 YANG S Y, LIU X M, XU J M. New perspectives about health risk assessment of soil heavy metal pollution—Origin and prospects of probabilistic risk analysis[J]. Acta Pedologica Sinica, 2022, 59(1): 28-37 (in Chinese). doi: 10.11766/trxb202009120516
[11] 李贺, 王书航, 车霏霏, 等. 巢湖、洞庭湖、鄱阳湖沉积物重金属污染及来源的Meta分析[J]. 中国环境科学, 2023, 43(2): 831-842. doi: 10.3969/j.issn.1000-6923.2023.02.036 LI H, WANG S H, CHE F F, et al. Mate analysis of heavy metal pollution in sediments of Chaohu Lake, Dongting Lake and Poyang Lake[J]. China Environmental Science, 2023, 43(2): 831-842 (in Chinese). doi: 10.3969/j.issn.1000-6923.2023.02.036
[12] 陈莹, 吴敏, 陈全, 等. Monte-Carlo模拟在土壤重金属生态风险评价中的应用[J]. 环境化学, 2023, 42(10): 3359-3367. doi: 10.7524/j.issn.0254-6108.2022051404 CHEN Y, WU M, CHEN Q, et al. Application of Monte-Carlo simulation in ecological risk assessment of heavy metals in soil[J]. Environmental Chemistry, 2023, 42(10): 3359-3367 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022051404
[13] YANG Y F, LU X W, YU B, et al. Source-specific risk judgement and environmental impact of potentially toxic elements in fine road dust from an integrated industrial city, North China[J]. Journal of Hazardous Materials, 2023, 458: 131982. doi: 10.1016/j.jhazmat.2023.131982 [14] LI J, LI K M, JIAO L, et al. Contamination, ecological-health risks, and sources of potentially toxic elements in road-dust sediments and soils of the largest urban riverfront scenic park in China[J]. Environmental Geochemistry and Health, 2023, 45(11): 8169-8186. doi: 10.1007/s10653-023-01715-4 [15] ZHOU H, YUE X M, CHEN Y, et al. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area[J]. Science of the Total Environment, 2024, 906: 167772. doi: 10.1016/j.scitotenv.2023.167772 [16] WANG M, TIAN P F, WANG L G, et al. High contribution of vehicle emissions to fine particulate pollutions in Lanzhou, Northwest China based on high-resolution online data source appointment[J]. Science of the Total Environment, 2021, 798: 149310. doi: 10.1016/j.scitotenv.2021.149310 [17] HE D, HOU K, WEN J F, et al. A coupled study of ecological security and land use change based on GIS and entropy method—a typical region in Northwest China, Lanzhou[J]. Environmental Science and Pollution Research, 2022, 29(4): 6347-6359. doi: 10.1007/s11356-021-16080-x [18] 蒋煜峰, 胡雪菲, 王蓓蕾, 等. 兰州市西固区土壤中PAHs污染特征及来源解析[J]. 环境科学研究, 2014, 27(10): 1164-1171. JIANG Y F, HU X F, WANG B L, et al. Levels, source identification and contamination characteristics of PAHs in soils from Xigu district in Lanzhou, northwestern China[J]. Research of Environmental Sciences, 2014, 27(10): 1164-1171 (in Chinese).
[19] 陈月芳, 孙善伟, 段小丽, 等. 兰州市西固区儿童饮用水重金属暴露及健康风险精细化评估[J]. 环境科学, 2020, 41(1): 262-272. CHEN Y F, SUN S W, DUAN X L, et al. Refined assessment of exposure and health risks of heavy metals in water for the children in Xigu district, Lanzhou[J]. Environmental Science, 2020, 41(1): 262-272 (in Chinese).
[20] 李军, 高占栋, 马利邦, 等. 黄河兰州段城市饮用水源地土壤重金属污染及其溯源的多指标综合分析[J/OL]. 环境科学, 1-15 2024-03-25]. LI J, GAO Z D, MA L B, et al. Multiproxy comprehensive analysis for source apportionment and pollution of heavy metals in urban drinking-water source soils from the Lanzhou reach of the Yellow River [J/OL]. Environmental Science, 1-15[2024-03-25] (in Chinese).
[21] 李凌云, 阎子健. 兰州市西固区土壤重金属污染及空间分布特征[J]. 甘肃科技, 2011, 27(8): 62-65. doi: 10.3969/j.issn.1000-0952.2011.08.021 LI L Y, YAN Z J. Pollution and spatial distribution characteristics of heavy metals in soils in Xigu district of Lanzhou city[J]. Gansu Science and Technology, 2011, 27(8): 62-65 (in Chinese). doi: 10.3969/j.issn.1000-0952.2011.08.021
[22] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. ZHANG G L, GONG Z T. Soil survey laboratory methods[M]. Beijing: Science Press, 2012 (in Chinese).
[23] 生态环境部. 《土壤和沉积物19种金属元素总量的测定电感耦合等离子体质谱法》(HJ 1315—2023). [24] FENG W L, ZHANG Y F, HUANG L L, et al. Source apportionment of environmentally persistent free radicals (EPFRs) and heavy metals in size fractions of urban arterial road dust[J]. Process Safety and Environmental Protection, 2022, 157: 352-361. doi: 10.1016/j.psep.2021.11.039 [25] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China Environmental Monitoring Station. Chinese soil element background value[M]. Beijing: China Environmental Science Press, 1990 (in Chinese).
[26] HONG H L, WU S J, WANG Q, et al. Trace metal pollution risk assessment in urban mangrove patches: Potential linkage with the spectral characteristics of chromophoric dissolved organic matter[J]. Environmental Pollution, 2021, 272: 115996. doi: 10.1016/j.envpol.2020.115996 [27] LI Y Z, CHEN H Y, SONG L T, et al. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river[J]. Journal of Hazardous Materials, 2021, 409: 124472. doi: 10.1016/j.jhazmat.2020.124472 [28] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [29] WANG Z Z, LU X W, YU B, et al. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city[J]. Science of the Total Environment, 2023, 887: 164022. doi: 10.1016/j.scitotenv.2023.164022 [30] CHEN H Y, TENG Y G, LU S J, et al. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China[J]. Chemosphere, 2016, 144: 1002-1011. doi: 10.1016/j.chemosphere.2015.09.081 [31] 环境保护部. 中国人群暴露参数手册-成人卷 [M]. 北京: 中国环境出版社, 2013. Ministry of Environmental Protection. Exposure factors handbook of Chinese population (adults)[M]. Beijing: China Environmental Science Press, 2013 (in Chinese).
[32] 环境保护部. 中国人群暴露参数手册-儿童卷[M]. 北京: 中国环境出版社, 2016. Ministry of Environmental Protection. Exposure factors handbook of Chinese population (children)[M]. Beijing: China Environmental Science Press, 2016 (in Chinese).
[33] USEPA. Exposure Factors Handbook, Final. U. S. Environment Protection Agency, Washington DC, 2011. [34] SMITH R L. Use of Monte Carlo simulation for human exposure assessment at a superfund site[J]. Risk Analysis: an Official Publication of the Society for Risk Analysis, 1994, 14: 433-439. doi: 10.1111/j.1539-6924.1994.tb00261.x [35] LI Z Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090 [36] FINLEY B L, SCOTT P K, MAYHALL D A. Development of a standard soil-to-skin adherence probability density function for use in Monte Carlo analyses of dermal exposure[J]. Risk Analysis: an Official Publication of the Society for Risk Analysis, 1994, 14(4): 555-569. doi: 10.1111/j.1539-6924.1994.tb00270.x [37] USEPA. Soil Screening Guidance, User’s Guide, 1996. [38] USEPA. Risk assessment guidance for Superfund Volume I: Human Health Evaluation Manual (Part A). U. S. Environment Protection Agency, Washington DC, 1989. [39] JIANG Q, HE Y M, WU Y L, et al. Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review[J]. Environmental Pollution, 2022, 312: 120094. doi: 10.1016/j.envpol.2022.120094 [40] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618-2018[S]. 北京: 中国标准出版社, 2018. [41] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600-2018[S]. 北京: 中国标准出版社, 2018. [42] ZHU Y, AN Y F, LI X Y, et al. Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui Province, China[J]. Environmental Research, 2024, 241: 117670. doi: 10.1016/j.envres.2023.117670 [43] ZHAO H D, LAN X P, YU F X, et al. Comprehensive assessment of heavy metals in soil-crop system based on PMF and evolutionary game theory[J]. Science of the Total Environment, 2022, 849: 157549. doi: 10.1016/j.scitotenv.2022.157549 [44] SUN J X, ZHAO M L, HUANG J L, et al. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment[J]. Journal of Hazardous Materials, 2022, 423: 127116. doi: 10.1016/j.jhazmat.2021.127116 [45] LV J S. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils[J]. Environmental Pollution, 2019, 244: 72-83. doi: 10.1016/j.envpol.2018.09.147 [46] CHEN X Y, LI F, ZHANG J D, et al. Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: A systematic review[J]. Science of the Total Environment, 2021, 785: 147180. doi: 10.1016/j.scitotenv.2021.147180 [47] WANG C C, ZHANG Q C, YAN C G, et al. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis[J]. Science of the Total Environment, 2023, 882: 163361. doi: 10.1016/j.scitotenv.2023.163361 [48] SHI X M, LIU S, SONG L, et al. Contamination and source-specific risk analysis of soil heavy metals in a typical coal industrial city, central China[J]. Science of the Total Environment, 2022, 836: 155694. doi: 10.1016/j.scitotenv.2022.155694 [49] ADIMALLA N, CHEN J, QIAN H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110406. doi: 10.1016/j.ecoenv.2020.110406 [50] ZHANG W H, YAN Y, YU R L, et al. The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from South Fujian Province, China[J]. CATENA, 2021, 203: 105306. doi: 10.1016/j.catena.2021.105306 [51] SHI J D, ZHAO D, REN F T, et al. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment[J]. Science of the Total Environment, 2023, 871: 161768. doi: 10.1016/j.scitotenv.2023.161768 [52] GUO G H, WANG Y T, ZHANG D G, et al. Source-specific ecological and health risks of potentially toxic elements in agricultural soils in Southern Yunnan Province and associated uncertainty analysis[J]. Journal of Hazardous Materials, 2021, 417: 126144. doi: 10.1016/j.jhazmat.2021.126144 [53] LIAN Z M, ZHAO X M, GU X, et al. Presence, sources, and risk assessment of heavy metals in the upland soils of Northern China using Monte Carlo simulation[J]. Ecotoxicology and Environmental Safety, 2022, 230: 113154. doi: 10.1016/j.ecoenv.2021.113154