-
砷是地球上最丰富的元素之一,具有金属和非金属特性,普遍存在于水体、土壤和沉积物颗粒中,可作为水环境中暴露生物体的介质[1]. 近年来,砷污染对人类和动物健康构成了巨大威胁[2],并成为全球主要的环境问题[3]. 人类接触砷的主要来源是饮食[4],具有高毒性和高致癌性的砷会通过食物链摄取和转移进入人体[5]. 淡水生物能有效代谢砷,并调节砷的生物地球化学循环[6]. 克氏原螯虾(Procambarusclarkii)俗称小龙虾,是一种广泛分布于欧亚大陆的底栖动物[7],因其美味可口、富含蛋白质、脂肪酸、维生素D、碘和矿物质而深受我国人民喜爱[8]. 但是,小龙虾易从水环境中积累高浓度的砷(As)[9],对人类饮食安全存在很大的隐患[10]. 底栖生物吸收砷的途径主要有两种[11]:一种是水和沉积物中的砷暴露,另一种是食物中的砷暴露.
一些底栖生物,如虾、螺类、牡蛎等,因其营养丰富、易于捕捞而成为人们喜爱的食物. 但由于沉积环境比其他环境介质积累更多的污染物,底栖生物可能比水环境中的其他生物更能积累有毒物质[12]. 砷的形态影响其流动性和生物利用度,从而影响其进入食物链[13]. 在所有的虾消化过程中,研究发现底栖生物体内有机砷的毒性较小,砷甜菜碱(AsB)是主要的形态[14]. 目前,关于砷在淡水水生生物中的积累和转化,只能通过观察生物的肌肉组织来实现. 这可能导致低估了砷化合物在非肌肉组织中的重要性,从而忽视了砷的不同形态在某些底栖生物或其他鱼类生物可食用组织中的积累[15]. 因此,研究底栖生物不同组织中砷的生物积累和转化机制具有重要意义.
矿山开采、有色金属冶炼、电镀等人类活动使得大量As(V)进入环境中[16]. Chételat等[17]对加拿大金矿开采附近的耶洛奈夫湾沉积物孔隙水进行了砷剖面分析,发现孔隙水剖面最大砷含量为3220 μg·L−1,主要为As(Ⅲ). 陈明[18]对贵州独山县瑞丰采矿公司下游麻球河不同河段进行采样测定与分析,发现As(V)含量最高为14200 μg·L−1. 砷在天然水中的浓度范围为0.5 μg·L−1至10000 μg·L-1[19],天然水体底部及沉积物中的砷浓度相较水体其他部分更高[20],且现有对小龙虾及轮叶黑藻(Hydrilla verticillata)的砷的积累转化研究实验的砷浓度设置通常为500、1000、5000 μg·L−1等,超高浓度的累积实验较少,且高浓度的累积能更好地对比不同培养条件下克氏原螯虾组织中砷的累积与转化规律,为小龙虾的食用安全提供理论依据. 本研究的目的是探讨不同暴露条件下,砷在小龙虾主要组织中的积累和生物转化,以及在受As(V)污染的水环境中,小龙虾在水-食物两相暴露体系下和水相、食物相单相相加积累的砷的情况进行对比分析.
不同暴露条件下克氏原螯虾组织中砷的积累与转化
Accumulation and transformation of arsenic in the tissues of Procambarusclarkii under different exposure conditions
-
摘要: 砷(As)可在水生食物链中积累转化,并通过食物链影响人体健康. 克氏原螯虾(Procambarusclarkii)是一种生活在淡水底层的杂食性动物,能够从水和食物中吸收和转化无机砷. 本研究探究了砷酸盐As(V)在3种不同的暴露条件下(水相、食物相、水相与食物相),克氏原螯虾不同组织中As(V)的生物积累和转化. 结果表明,其在水-食物两相体系中的砷积累浓度较高,而且水相暴露体系对总砷积累速率的贡献大于食物相暴露体系. 砷在克氏原螯虾不同组织中的积累和转化具有显著的特异性,其富集浓度和积累速率如下:鳃>外壳>肌肉. 克氏原螯虾对无机砷的生物转化途径是将部分As(V)还原为As(Ⅲ),部分转化为一甲基砷酸(MMA)、二甲基砷酸(DMA)和砷甜菜碱(AsB). 本文对了解底栖生物链中砷的积累和转化以及小龙虾的食用安全具有重要意义.Abstract: Arsenic (As) can accumulate and transform in the aquatic food chain and affect human health through the food chain. The crayfish (Procambarusclarkii), an omnivore living in freshwater substrates, is capable of absorbing and transforming inorganic arsenic from water and food. In this study, we investigated the bioaccumulation and transformation of arsenate As(V) in different tissues of Procambarusclarkii under three different exposure conditions (aqueous phase, food phase, aqueous phase&food phase). The results showed that the arsenic accumulation concentration was higher in aqueous phase&food phase system, and the contribution of the aqueous phase exposure system to the total arsenic accumulation rate was greater than that of the food phase exposure system. The accumulation and transformation of arsenic in different tissues of Procambarusclarkii were significantly specific, with the following enrichment concentrations and accumulation rates: gill > shell > muscle. The biotransformation pathway of inorganic arsenic in Procambarusclarkii was the partial reduction of As(V) to As(Ⅲ) and partial conversion to monomethylarsenic acid (MMA), dimethylarsenic acid (DMA) and arsenic betaine (AsB). This is important for understanding the accumulation and transformation of arsenic in benthic biota and the food safety of crayfish.
-
Key words:
- Procambarusclarkii /
- Hydrilla verticillata /
- As /
- bioaccumulation /
- biotransformation.
-
表 1 人工淡水培养液配比表
Table 1. Artificial freshwater nutrient solution ration table
化合物
Compound浓度
Concentration化合物
Compound浓度
ConcentrationMgSO4·7H2O 22.7 mg·L−1 FeCl3·6H2O 1.41 mg·L−1 MgCl2·2H2O 30.7 mg·L−1 Al2(SO4)3·18H2O 0.97 mg·L−1 CaCl2·2H2O 20.4 mg·L−1 MnCl2·4H2O 0.19 mg·L−1 NaHCO3 26.0 mg·L−1 ZnSO4·7H2O 3.86 μg·L−1 KCl 3.61 mg·L−1 CuCl2·2H2O 2.17 μg·L−1 NaCl 45.7 mg·L−1 注:pH用1 mol·L−1的NaOH和HCl调至7.0. Note: The pH is adjusted to 7.0 with 1 mol·L−1 NaOH and HCl. -
[1] SHARMA V K, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005 [2] ZHANG H, SELIM H M. Reaction and transport of arsenic in soils: Equilibrium and kinetic modeling[J]. Advances in Agronomy, 2008, 98: 45-115. [3] IRSHAD S, XIE Z M, NAWAZ A, et al. Influence of Aquatic pH on chemical speciation, phytochelation and vacuolar compartmentalization of arsenic in Vallisneria denseserrulata (Makino)[J]. International Journal of Phytoremediation, 2020, 22(11): 1147-1155. doi: 10.1080/15226514.2020.1741507 [4] CHÁVEZ-CAPILLA T. The need to unravel arsenolipid transformations in humans[J]. DNA and Cell Biology, 2022, 41(1): 64-70. doi: 10.1089/dna.2021.0476 [5] SURUCU O. Electrochemical removal of arsenic and remediation of drinking water quality[J]. Desalination and Water Treatment, 2021, 216: 246-251. doi: 10.5004/dwt.2021.26808 [6] MAMUN M A A, RAHMAN I M M, DATTA R R, et al. Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: A culture medium study[J]. Chemosphere, 2019, 222: 705-713. doi: 10.1016/j.chemosphere.2019.01.185 [7] FAN H L, FAN D M, HUANG J L, et al. Cooking evaluation of crayfish (Procambarus clarkia) subjected to microwave and conduction heating: A visualized strategy to understand the heat-induced quality changes of food[J]. Innovative Food Science & Emerging Technologies, 2020, 62: 102368. [8] CHAI L Q, LI W W, WANG X W. Identification and characterization of two arasin-like peptides in red swamp crayfish Procambarus clarkii[J]. Fish & Shellfish Immunology, 2017, 70: 673-681. [9] 李思佳, 沈俊毅, 韩若冰. 上海市虹口区市售小龙虾中汞和砷的污染水平分析[J]. 现代食品, 2022, 28(19): 109-113. doi: 10.16736/j.cnki.cn41-1434/ts.2022.19.032 LI S J, SHEN J Y, HAN R B. Analysis of the contamination levels of mercury and arsenic in commercially available crayfish in Hongkou district, Shanghai[J]. Modern Food, 2022, 28(19): 109-113 (in Chinese). doi: 10.16736/j.cnki.cn41-1434/ts.2022.19.032
[10] HAN R, KHAN A, LING Z M, et al. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113216. doi: 10.1016/j.ecoenv.2022.113216 [11] ANANDKUMAR A, LI J, PRABAKARAN K, et al. Accumulation of toxic elements in an invasive crayfish species (Procambarus clarkii) and its health risk assessment to humans[J]. Journal of Food Composition and Analysis, 2020, 88: 103449. doi: 10.1016/j.jfca.2020.103449 [12] ZHANG W, GUO Z Q, SONG D D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. Science of the Total Environment, 2018, 626: 621-629. doi: 10.1016/j.scitotenv.2018.01.108 [13] WANG J J, KERL C F, HU P J, et al. Thiolated arsenic species observed in rice paddy pore waters[J]. Nature Geoscience, 2020, 13(4): 282-287. doi: 10.1038/s41561-020-0533-1 [14] CHI H F, ZHANG Y C, WILLIAMS P N, et al. In vitro model to assess arsenic bioaccessibility and speciation in cooked shrimp[J]. Journal of Agricultural and Food Chemistry, 2018, 66(18): 4710-4715. doi: 10.1021/acs.jafc.7b06149 [15] VAHTER M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181/182: 211-217. doi: 10.1016/S0300-483X(02)00285-8 [16] ZHENG L L, ZHOU Z K, RAO M M, et al. Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China[J]. Environmental Geochemistry and Health, 2020, 42(5): 1401-1413. doi: 10.1007/s10653-019-00428-x [17] CHÉTELAT J, PALMER M J, PAUDYN K, et al. Remobilization of legacy arsenic from sediment in a large subarctic waterbody impacted by gold mining[J]. Journal of Hazardous Materials, 2023, 452: 131230. doi: 10.1016/j.jhazmat.2023.131230 [18] 陈明. 采取合理措施 避免跨界污染: 贵州独山瑞丰矿业砷污染事件解析[J]. 环境保护, 2009, 37(3): 63-64. CHEN M. Take reasonable measures to avoid cross-border pollution—Analysis of arsenic pollution in Ruifeng mining, Dushan, Guizhou Province[J]. Environmental Protection, 2009, 37(3): 63-64 (in Chinese).
[19] LI Y Z, MA L, ABUDUWAILI J, et al. Spatiotemporal distributions of fluoride and arsenic in rivers with the role of mining industry and related human health risk assessments in Kyrgyzstan[J]. Exposure and Health, 2022, 14(1): 49-62. doi: 10.1007/s12403-021-00417-5 [20] WANG C, WANG K, ZHOU W Q, et al. Occurrence, risk, and source of heavy metals in lake water columns and sediment cores in Jianghan Plain, central China[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3676. doi: 10.3390/ijerph20043676 [21] XUE P Y, YAN C Z. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L. f. ) Royle[J]. Chemosphere, 2011, 85(7): 1176-1181. doi: 10.1016/j.chemosphere.2011.09.051 [22] LI W X, LIU J, HUDSON-EDWARDS K A. Seasonal variations in arsenic mobility and bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan Province, China[J]. The Science of the Total Environment, 2020, 749: 142353. doi: 10.1016/j.scitotenv.2020.142353 [23] NAKAYA M, TAKATSU T, NAKAGAMI M, et al. Spatial distribution and feeding habits of the shrimp Crangon uritai as a predator on larval and juvenile marbled sole Pleuronectes yokohamae[J]. Fisheries Science, 2004, 70(3): 445-455. doi: 10.1111/j.1444-2906.2004.00824.x [24] KOLTS J M, BOESE C J, MEYER J S. Acute toxicity of copper and silver to Ceriodaphnia dubia in the presence of food[J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1831-1835. doi: 10.1897/05-501R.1 [25] HOOK S E, FISHER N S. Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing[J]. Environmental Toxicology and Chemistry, 2001, 20(3): 568-574. doi: 10.1002/etc.5620200316 [26] ROSENKRANZ P, CHAUDHRY Q, STONE V, et al. A comparison of nanoparticle and fine particle uptake by Daphnia magna[J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2142-2149. doi: 10.1897/08-559.1 [27] 王雨璇, 陈冠虹, 喻敏, 等. 淡水硅藻的砷甲基化和砷氧化代谢机制[J]. 环境工程学报, 2023, 17(5): 1620-1630. WANG Y X, CHEN G H, YU M, et al. Metabolic mechanisms of arsenic methylation and oxidation in freshwater diatoms[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1620-1630 (in Chinese).
[28] SUHENDRAYATNA, OHKI A, KUROIWA T, et al. Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite[J]. Applied Organometallic Chemistry, 1999, 13(2): 127-133. doi: 10.1002/(SICI)1099-0739(199902)13:2<127::AID-AOC810>3.0.CO;2-K [29] CAUMETTE G, KOCH I, MORIARTY M, et al. Arsenic distribution and speciation in Daphnia pulex[J]. Science of the Total Environment, 2012, 432: 243-250. doi: 10.1016/j.scitotenv.2012.05.050 [30] GEDIK K, KONGCHUM M, DeLAUNE R D, et al. Distribution of arsenic and other metals in crayfish tissues (Procambarus clarkii) under different production practices[J]. Science of the Total Environment, 2017, 574: 322-331. doi: 10.1016/j.scitotenv.2016.09.060 [31] CIARDULLO S, AURELI F, RAGGI A, et al. Arsenic speciation in freshwater fish: Focus on extraction and mass balance[J]. Talanta, 2010, 81(1/2): 213-221. [32] 周志豪, 黄振华, 周朝生, 等. 振荡提取-高效液相色谱-电感耦合等离子体质谱法测定藻类中6种形态砷化合物[J]. 山东化工, 2018, 47(21): 71-73, 76. doi: 10.19319/j.cnki.issn.1008-021x.2018.21.027 ZHOU Z H, HUANG Z H, ZHOU C S, et al. Arsenic speciation analysis of algae by using vibrated extraction high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Shandong Chemical Industry, 2018, 47(21): 71-73, 76 (in Chinese). doi: 10.19319/j.cnki.issn.1008-021x.2018.21.027
[33] 宋梦萍, 杨常亮, 张璟, 等. 食物相暴露条件下尼罗罗非鱼对砷的累积与转化[J]. 环境化学, 2022, 41(6): 1897-1904. doi: 10.7524/j.issn.0254-6108.2021113002 SONG M P, YANG C L, ZHANG J, et al. Accumulation and transformation of arsenic in Oreochromis niloticus under food phase exposure[J]. Environmental Chemistry, 2022, 41(6): 1897-1904 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021113002
[34] PAPRY R I, FUJISAWA S, ZAI Y H, et al. Freshwater phytoplankton: Salinity stress on arsenic biotransformation[J]. Environmental Pollution, 2021, 270: 116090. doi: 10.1016/j.envpol.2020.116090 [35] WEBSTER L, RUSSELL M, WALSHAM P, et al. Halogenated persistent organic pollutants in relation to trophic level in deep sea fish[J]. Marine Pollution Bulletin, 2014, 88(1/2): 14-27. [36] ZHANG J Q, HU X L, ZHANG K J, et al. Desorption of calcium-rich crayfish shell biochar for the removal of lead from aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 554: 417-423. doi: 10.1016/j.jcis.2019.06.096 [37] XIONG B, XU T, LI R P, et al. Heavy metal accumulation and health risk assessment of crayfish collected from cultivated and uncultivated ponds in the Middle Reach of Yangtze River[J]. Science of the Total Environment, 2020, 739: 139963. doi: 10.1016/j.scitotenv.2020.139963 [38] PALOMA A, ANGEL B. The trophic ecology of the red swamp crayfish (Procambarus clarkii) in Mediterranean aquatic ecosystems: A stable isotope study[J]. Limnetica, 2013(32): 121-138. doi: 10.23818/limn.32.12 [39] SCHAEFFER R, FRANCESCONI K A, KIENZL N, et al. Arsenic speciation in freshwater organisms from the River Danube in Hungary[J]. Talanta, 2006, 69(4): 856-865. doi: 10.1016/j.talanta.2005.11.025 [40] SOEROES C, GOESSLER W, FRANCESCONI K A, et al. Arsenic speciation in farmed Hungarian freshwater fish[J]. Journal of Agricultural and Food Chemistry, 2005, 53(23): 9238-9243. doi: 10.1021/jf0516639