-
锑(Sb)是环境中具有生理毒性和致癌性的类金属元素,Sb污染主要发生在锑矿区开采、选矿和冶炼活动过程中[1]. 这些活动产生的尾矿和废渣长期暴露在地表环境,导致Sb随地表径流、雨雪下渗等作用不断向周围环境释放,对矿区及周边土壤、水环境及农作物等造成污染[2]. Sb在矿区污染中传输途径复杂并且机制多样,在不同区域(采矿区、选矿区、冶炼区)的污染历史和积累过程存在差异性. 在Sb污染传输过程中,通常都伴随着一系列的地球化学过程,如沉淀溶解、吸附解吸、氧化还原等[3]. 尽管目前对Sb的地球化学行为已有较多研究[4 − 5],但多基于实验室尺度,而对野外矿区污染以土壤或生物富集风险调查评价为主,且评价多基于土壤中Sb金属总量,缺乏污染土壤中Sb的溶出释放特征、赋存形态及预测模型的研究. 地球化学形态模型有助于阐释痕量元素在土壤环境中的形态分配过程,前期一些研究已构建了Sb在典型铁氧化物以及黏土矿物上的表面络合模型[6 − 10],为构建土壤中Sb的多表面形态模型提供了基础,但由于Sb在实际土壤中活性吸附表面的选择、竞争离子效应等的不确定性,采用地球化学形态模型描述Sb在土壤中的分配过程仍十分具有挑战性,相关研究较少[11 − 12].
本研究选取贵州晴隆锑矿区的某废弃冶炼厂污染场地土壤作为研究对象. 通过对锑矿区不同位置土壤的采样分析,结合XRD和XPS等光谱分析技术手段,探明Sb在土壤中的污染程度、空间分布和赋存形态特征,同时比较了不同提取剂对有效态Sb的提取效果,并采用地球化学多表面形态模型对实际土壤中Sb的溶出行为进行预测. 研究结果可为准确预测和评估矿区土壤非稳态Sb的溶出能力和迁移风险提供基础方法.
贵州晴隆锑矿区土壤中锑的形态分布和地球化学模型
Species distribution and geochemical modeling of antimony in the Qinlong antimony mining area
-
摘要: 以贵州晴隆锑矿区某冶炼厂及周边地区土壤为对象研究了锑的形态分布特征. 结果发现,冶炼厂土壤中锑污染严重,含量最高达31265 mg·kg−1,但在下游土壤中随距离增加,锑浓度迅速下降到100 mg·kg−1以内. XRD和XPS结果显示土壤中主要含锑化合物为锑酸钙(Ca2Sb2O7)、锑酸钾(K3Sb5O14)以及氧化锑(Sb2O5),锑以五价形态存在. 连续提取形态分析表明除残渣态外,厂区附近污染土壤中碳酸盐和金属氧化物的共沉淀态是锑的主要宿主相,而下游土壤中吸附态比例显著升高,说明在迁移过程中土壤中锑的活性增加. 构建了以水合铁氧化物和针铁矿作为锑主要活性表面的土壤中锑地球化学多表面形态模型(MSM),当采用1 mol·L−1 Na2HPO4提取的锑作为总有效态锑输入值时,该模型可很好地预测不同性质和污染程度的土壤中锑的溶出效应(RMSE = 0.29),说明该模型可为准确评估锑冶炼厂周边污染土壤中锑生态毒性和迁移淋溶风险提供有潜力的工具和方法.Abstract: The speciation of antimony (Sb) in the soils of a smelter and the surrounding areas in the antimony mining area of Qinglong, Guizhou Province was investigated. It was found that the smelter soils were severely contaminated by Sb, with the highest content reaching 31265 mg·kg−1, while the Sb contents in the downstream soil decreased rapidly to less than 100 mg·kg−1 with increasing distance. The main Sb-bearing compounds were identified by XRD and XPS to be pentavalent calcium antimonate (Ca2Sb2O7), potassium antimonate (K3Sb5O14) and antimony oxide (Sb2O5). Sequential extraction experiments showed that besides the residue fraction, the co-precipitation with carbonate and ferric oxides was the main species of Sb in soils at the smelter area, while the strongly adsorbed fractions were significantly higher in the downstream soils, indicating that the Sb mobility increased in the transport process. A geochemical multi-surface speciation model (MSM) for Sb in soil was developed with HFO and goethite as the main active surfaces. When Sb extracted with 1 mol·L−1 Na2HPO4 was used as the total available Sb in the model, the model could successfully predict the dissolved Sb in soils with different properties and contamination levels (RMSE = 0.29), indicating that the model offers a promising tool for assessing the ecological and leaching risks of Sb in contaminated soils around Sb smelters.
-
Key words:
- Sb /
- antimony mining soil /
- speciation /
- available species /
- multi-surface speciation model.
-
图 3 (a)土壤样品的XRD图谱(以A1、A3、A5、A23和B5样品为例)(Q为石英-SiO2;C为方解石-CaCO3;A为磷铝石-AlPO4;K为高岭石-Al2Si2O5(OH)4;G为氧化铁-Fe2O3;S为锑酸钙-Ca2Sb2O7;P为氧化锑-Sb2O5;O为锑酸钾-K3Sb5O14);(b)和(c)高锑浓度土样A1和A3的XPS谱图Sb3d分谱
Figure 3. (a) X-ray powder diffraction patterns of soil samples (take samples A1, A3, A5, A23, andB5 for example);(b) and (c) Sb3d fractionation of XPS spectra of 2 soil samples (A1, A3)
图 6 多表面形态模型对0.05 mol·L−1 (NH4)2SO4提取Sb(V)浓度的预测效果分别以(a)0.1 mol·L−1 Na2HPO4,(b)1 mol·L−1 Na2HPO4,(c)0.1 mol·L−1草酸提取结果为非稳态总Sb(V)浓度
Figure 6. Prediction of Sb(V) concentration extracted by 0.05 mol·L−1(NH4)2SO4using multi-surface speciation model with (a) 0.1 mol·L−1 Na2HPO4, (b) 1 mol·L−1 Na2HPO4, (c) 0.1mol·L−1 oxalic acid, extracted Sb(V)as total effective Sb(V) concentrations
表 1 土壤中锑形态连续提取法操作步骤
Table 1. Sequential extraction of Sb in soil
步骤
Step实验步骤
Procedure形态名称
SpeciationF1 25 mL pH=8的0.05 mol·L−1硫酸铵溶液,25 ℃振荡2 h
35 mL 0.05 mol·L−1 (NH4)2SO4, pH=8, 2 h, 25 ℃离子结合态
Ionically boundF2 35 mL pH=5的1 mol·L−1磷酸二氢钠溶液,25 ℃振荡16 h
35 mL 1 mol·L−1 NaH2PO4, pH=5, 16 h, 25 ℃强吸附态
Strongly adsorbedF3 35 mL的1 mol·L−1盐酸,25 ℃振荡1 h
35 mL 1 mol·L−1 HCl, 1 h, 25 ℃碳酸盐,锰氧化物共沉淀态
Carbonates and Mn oxides co-precip.F4 35 mL pH=3的0.2 mol·L−1草酸铵溶液,25 ℃避光条件下振荡2 h
10 mL 0.2 mol·L−1 NH4-oxalate, pH=3, 2 h in dark, 25 ℃无定形铁氧化物共沉淀
Amorphous Fe oxides co-precip.F5 35 mL的0.5 mol·L−1柠檬酸钠溶液,2.5 mL的1 mol·L−1碳酸氢钠溶液和1 g 连二亚硫酸钠粉末,85 ℃水浴加热15 min
35 mL 0.5 mol·L−1 Na-citrate, 2.5 mL 1 mol·L−1 NaHCO3 and 1 g Na2S2O4, keeping 15 min in 85 ℃晶型铁氧化物共沉淀
Crystalline Fe oxides co-precip.F6 根据USEPA 3050B方法,使用浓硝酸和30%过氧化氢消解
16 N HNO3 and 30% H2O2 according to USEPA method 3050B硫化物以及有机物结合态
Stronger oxidation sulfides and organic matterF7 15 mL王水,105 ℃消解2 h
15 mL aqua regia, 2 h, 105 ℃残渣态
Residual mineral表 2 HFO和针铁矿的相关表面络合模型参数
Table 2. 2Surface complexation model parameters of Sb on HFO and goethite
表面反应
Surface reactionlgK Δz0 Δz1 Δz2 水合铁氧化物HFO[11] ≡FeOH−0.5 + RO− +H+ ↔ ≡FeOR−0.5+H2O 25 0.5 −0.5 0 2≡FeOH−0.5 +PO43− +2H+ ↔ ≡Fe2O2PO2−2+2H2O 27.59 0.46 −1.46 0 2≡FeOH−0.5 +PO43− +3H+ ↔≡Fe2O2POOH−+2H2O 32.89 0.63 −0.63 0 ≡FeOH−0.5 +PO43− +3H+ ↔≡FeOPO(OH)2−0.5+H2O 30.23 0.5 −0.5 0 ≡2FeOH−0.5 + H+ +Sb(OH)6−↔ ≡Fe2O2HSb(OH)4−+2H2O 12.88 0.7 −0.7 0 针铁矿goethite[18] ≡FeOH−0.5 + RO− +H+ ↔≡FeOR−0.5+H2O 25 0.5 −0.5 0 2≡FeOH−0.5 +PO43− +2H+ ↔ ≡Fe2O2PO2−2+2H2O 27.59 0.46 −1.46 0 2≡FeOH−0.5 +PO43− +3H+ ↔≡Fe2O2POOH−+2H2O 32.89 0.63 −0.63 0 ≡FeOH−0.5 +PO43− +3H+ ↔≡FeOPO(OH)2−0.5+H2O 30.23 0.5 −0.5 0 ≡FeOH−0.5 + H+ +Sb(OH)6−↔ ≡FeOSb(OH)4−0.5+2H2O 11.34 0 0 0 2≡FeOH−0.5+Sb(OH)6−↔ ≡Fe2O2Sb(OH)4−2+2H2O 5.93 −0.33 −0.67 0 表 3 土壤样品理化性质的描述性统计分析
Table 3. Descriptive statistics of characteristics of soil samples
指标
Index浓度范围
Concentration range平均值±标准差
Average value±SD背景值
Background valueA区
Zone AB区
Zone BA区
Zone AB区
Zone BpH 2.93—8.06 3.94—7.69 6.05±1.36 4.91±1.01 4.56 土壤有机质/(g·kg−1)
SOM21.52—257.64 40.68—150.93 125.43±68.64 82.41±36.44 69.28 草酸提取铁/(g·kg−1)
Oxalic acid extracted Fe1.09—30.15 6.83—40.79 12.82±7.24 16.51±8.63 2.18 DCB法提取铁/(g·kg−1)
DCB extracted Fe5.48—123.41 29.32—56.41 36.39±22.20 43.37±8.47 6.82 总Sb/(mg·kg−1)
Total Sb27.85—31265.00 3.23—374.05 3561.08±6087.77 102.83±122.07 7.40 -
[1] 肖涵, 韩志伟, 熊佳, 等. 贵州晴隆锑矿尾砂中锑和砷的生物有效性及生态风险评价[J]. 环境工程, 2022, 40(5): 123-132. XIAO H, HAN Z W, XIONG J, et al. Bioavailability and ecological risk assessment of Sb and As in tailings of Qinglong antimony mine in Guizhou[J]. Environmental Engineering, 2022, 40(5): 123-132 (in Chinese).
[2] 任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449. doi: 10.7524/j.issn.0254-6108.2019090701 REN J, LIU X W, LI J, et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12): 3436-3449 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019090701
[3] HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. doi: 10.1016/j.jes.2018.05.023 [4] BOLAN N, KUMAR M, SINGH E, et al. Antimony contamination and its risk management in complex environmental settings: A review[J]. Environment International, 2022, 158: 106908. doi: 10.1016/j.envint.2021.106908 [5] HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545-559. doi: 10.1016/j.envpol.2017.01.057 [6] ESSINGTON M, STEWART M, VERGEER K. Adsorption of antimonate by kaolinite[J]. Soil Science Society of America Journal, 2017, 81(3): 514-525. doi: 10.2136/sssaj2016.12.0402 [7] ESSINGTON M E, STEWART M A. Adsorption of antimonate by gibbsite: Reversibility and the competitive effects of phosphate and sulfate[J]. Soil Science Society of America Journal, 2016, 80(5): 1197-1207. doi: 10.2136/sssaj2016.04.0129 [8] GUO X, WU Z, HE M, et al. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276: 339-345. doi: 10.1016/j.jhazmat.2014.05.025 [9] ESSINGTON M E, VERGEER K A. Adsorption of antimonate, phosphate, and sulfate by manganese dioxide: Competitive effects and surface complexation modeling[J]. Soil Science Society of America Journal, 2015, 79(3): 803-814. doi: 10.2136/sssaj2014.12.0482 [10] RAKSHIT S, SARKAR D, PUNAMIYA P, et al. Antimony sorption at gibbsite-water interface[J]. Chemosphere, 2011, 84(4): 480-483. doi: 10.1016/j.chemosphere.2011.03.028 [11] VERBEECK M, WARRINNIER R, GUSTAFSSON J P, et al. Soil organic matter increases antimonate mobility in soil: An Sb(OH)6 sorption and modelling study[J]. Applied Geochemistry, 2019, 104: 33-41. doi: 10.1016/j.apgeochem.2019.03.012 [12] VITHANAGE M, RAJAPAKSHA A U, DOU X, et al. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils[J]. Journal of Colloid and Interface Science, 2013, 406: 217-224. doi: 10.1016/j.jcis.2013.05.053 [13] DIJKSTRA J J, MEEUSSEN J C L, COMANS R N J. Evaluation of a generic multisurface sorption model for inorganic soil contaminants[J]. Environmental Science & Technology, 2009, 43(16): 6196-6201. [14] TAN D, LONG J, LI B, et al. Fraction and mobility of antimony and arsenic in three polluted soils: A comparison of single extraction and sequential extraction[J]. Chemosphere, 2018, 213: 533-540. doi: 10.1016/j.chemosphere.2018.09.089 [15] 赵晓鹏, 顾雪元. 地球化学模型在土壤重金属形态研究中的应用进展[J]. 环境化学, 2019, 38(1): 59-70. doi: 10.7524/j.issn.0254-6108.2018020101 ZHAO X P, GU X Y. Application of geochemical models in heavy metals speciation in soils: A review[J]. Environmental Chemistry, 2019, 38(1): 59-70 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018020101
[16] MITSUNOBU S, HARADA T, TAKAHASHI Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23): 7270-7276. [17] SCHEINOST A C, ROSSBERG A, VANTELON D, et al. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3299-3312. doi: 10.1016/j.gca.2006.03.020 [18] ESSINGTON M, STEWART M. Adsorption of antimonate, sulfate, and phosphate by goethite: Reversibility and competitive effects[J]. Soil Science Society of America Journal, 2018, 82(4): 803-814 doi: 10.2136/sssaj2018.01.0003 [19] GUSTAFSSON J P. Arsenate adsorption to soils: Modelling the competition from humic substances[J]. Geoderma, 2006, 136(1-2): 320-330. doi: 10.1016/j.geoderma.2006.03.046 [20] HIEMSTRA T, MIA S, DUHAUT P B, et al. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate[J]. Environmental Science & Technology, 2013, 47(16): 9182-9189. [21] KEIZER M G, VAN RIEMSDIJK W H. ECOSAT: A computer program for the calculation of speciation and transport in soil-water systems [Z]. The Netherlands; Wageningen University. 2009 [22] TAKAOKA M, FUKUTANI S, YAMAMOTO T, et al. Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure[J]. Analytical Sciences, 2005, 21(7): 769-773. doi: 10.2116/analsci.21.769 [23] OORTS K, SMOLDERS E, DEGRYSE F, et al. Solubility and toxicity of antimony trioxide (Sb2O3) in soil[J]. Environmental Science & Technology, 2008, 42(12): 4378-4383. [24] HE M. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China[J]. Environmental Geochemistry and Health, 2007, 29(3): 209-219. doi: 10.1007/s10653-006-9066-9 [25] OKKENHAUG G, ZHU Y G, LUO L, et al. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 2011, 159(10): 2427-2434. doi: 10.1016/j.envpol.2011.06.028 [26] ZHANG S, WANG Y, PERVAIZ A, et al. Comparison of diffusive gradients in thin-films (DGT) and chemical extraction methods for predicting bioavailability of antimony and arsenic to maize[J]. Geoderma, 2018, 332: 1-9. doi: 10.1016/j.geoderma.2018.06.023 [27] ETTLER V, MIHALJEVIC M, SEBEK O, et al. Antimony availability in highly polluted soils and sediments - A comparison of single extractions[J]. Chemosphere, 2007, 68(3): 455-463. doi: 10.1016/j.chemosphere.2006.12.085 [28] BEESLEY L, MORENO-JIMÉNEZ E, CLEMENTE R, et al. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction[J]. Environmental Pollution, 2010, 158(1): 155-160. doi: 10.1016/j.envpol.2009.07.021 [29] ANTELO J, ARCE F, AVENA M, et al. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate[J]. Geoderma, 2007, 138(1-2): 12-19. doi: 10.1016/j.geoderma.2006.10.011 [30] VERBEECK M, HIEMSTRA T, THIRY Y, et al. Soil organic matter reduces the sorption of arsenate and phosphate: a soil profile study and geochemical modelling[J]. European Journal of Soil Science, 2017, 68(5): 678-688. doi: 10.1111/ejss.12447