-
自然界中,砷(As)常以硫化物/氧化物或铜、镍、铁等砷化物的形式存在. 接触高浓度的砷会对健康造成严重影响,国际癌症研究机构(IARC)和美国环境保护署(EPA)分别将砷列为“1”类和“A”类致癌物质,世界卫生组织(WHO)规定饮用水中砷的最高允许浓度为10 μg·L−1. 矿区尾矿不合理堆存[1]、地热与火山活动[2]、农业生产[3]等都会造成砷污染,严重影响生态环境和人类生命健康.
针对地表土壤和径流中的砷,人们开发出各种除砷方法与工艺,包括化学淋洗[4]、化学钝化/稳定[5]、植物修复[6]、微生物修复[7-8]、电化学法[9]、膜分离[10]、可渗透反应墙(PRB)[11]等,取得良好的脱砷和固砷效果. 其中,基于原位修复技术的PRB方法具有除砷效率高、成本低、使用时效长等特点,特别适用于受污染地下水的修复[11]. PRB是一个填充有反应活性材料的原位处理区,填充材料能够选择性滞留、转化或稳定化流经该墙体的污染组分,从而达到治理污染物的目的. PRB处理系统不占用地面空间,无需外加动力系统,检测与维护简单[12].
填充材料是PRB的反应主体,其拦截性能、寿命、稳定性、经济性、施工可行性、安全性、环保性等都是PRB工程技术的关键要素. PRB填充材料在工程应用前,需要从污染物特性和场地水文地质条件等出发,开展性能评价、除砷机理等实验研究确定其组成与性能[13].
本文在综述PRB除砷反应填料及其固砷机理的基础上,简要介绍除砷PRB填充材料的实验研究,并以PRB除砷工程/中试为例阐明PRB的除砷效果,以促进我国地表径流砷污染治理PRB材料和工程技术的开发.
可渗透反应墙除砷的研究进展与展望
Progress and prospect of arsenic removal by permeable reactive barrier
-
摘要: 砷类化合物造成的环境污染严重影响生态和人类健康,有效地去除和防治砷污染是当前工业发展中亟待解决的问题之一. 基于原位修复的可渗透反应墙(PRB)技术具有低成本、高效能、可持续性和工艺简单等优点,利用PRB技术防治砷污染是一种绿色、经济又高效的选择. PRB中的填充材料是除砷的反应主体,因此总结了PRB除砷填充材料及其除砷性能与机理,包括黏土矿物、碳基材料、钙基材料、铁基材料和固体废弃物等. 其中,铁基材料对砷物种的固定能力较其它材料更为突出,零价铁、铁矿物、废铁材料等铁基材料广泛应用于砷污染修复,廉价易得又高效的铁基材料是未来PRB除砷材料的重要研究方向. 在此基础上,简要介绍了除砷PRB填充材料的实验研究与模拟,并通过PRB除砷工程或中试实验阐述了PRB的运行监测与砷污染治理效果,展望了PRB除砷材料和工程应用的发展前景与挑战,以促进我国地表径流砷污染治理PRB材料和技术的开发与进步.Abstract: The arsenic pollution seriously affects the ecological environment and human health. The effective removal and prevention of arsenic pollution is one of the most urgent problems to be solved in the current industrial circles. The permeable reactive barrier (PRB) technology based on in-situ remediation technology, with its advantages of low cost, high efficiency, sustainability and simple process, has been the green, economical and efficient choice for removing and preventing arsenic pollution. As the filling material in PRB project is the main reactive body to remove arsenic pollution, the types of arsenic removal filling materials of PRB and their performance and mechanism of arsenic removal are summarized, including clay minerals, carbon-based materials, calcium-based materials, iron-based materials, solid waste, etc. Of all these materials, the iron-based materials have obvious advantages over others in adsorption ability towards arsenic species. Iron-based materials such as zero-valent iron, iron-containing minerals and iron-containing waste have been widely used in arsenic pollution remediation, due to their advantages of low cost, easy availability and high arsenic removal efficiency, and have been the main research direction of arsenic removal material in PRB in the future. Therefore, the laboratory research and model simulation of PRB filling materials are briefly introduced, including several pilot or project examples of PRB for arsenic removal, illustration of the related operation and monitoring process with treatment effect on arsenic pollution. On this basis, we put forward the development prospects and challenges of PRB technology for arsenic removal filling materials and engineering applications, and we hope that this paper can contribute to the development and progress of PRB technology for arsenic pollution control in overland runoff.
-
表 1 PRB除砷铁基材料
Table 1. Iron-based materials for arsenic removal in PRB
材料分类
Material
classify材料组成
Material composition实验说明
Explanation of experiment除砷效果
Arsenic removal efficiency文献
Reference零价铁 零价铁 探究pH(4/7/9)与氧含量(缺氧/轻度曝气)对零价铁除砷的影响 在有限曝气和较低pH值下,亚砷酸根与ZVI反应,90%去除砷附着在ZVI颗粒上,其中60%被还原成元素状态;在相对有限曝气和非酸性条件下,40%—60%去除砷附着在ZVI上,而砷的氧化态没有变化;在厌氧条件下,还原减少,总砷去除率显著降低. [49] 零价铁 探究腐殖酸(HA)对零价铁除砷的影响 无HA时除砷率99%,有HA时除砷受到明显抑制. [50] 零价铁 探究硫化物对零价铁除砷的影响 柱实验中砷的浓度从最初的30—100 µg·L−1下降到1 µg·L−1以下,在吸附柱后部区域As主要吸附于铁(氢)氧化物,且不受硫化物的影响. [51] 零价铁 探究pH、共存阴离子、锰离子和有机物对ZVI吸附As(Ⅲ)的影响 阴离子(氯离子、碳酸根离子、硝酸根离子、磷酸根离子、硫酸根离子和硼酸根离子)、锰离子和有机物对ZVI去除亚砷酸盐有不同程度的抑制作用,高浓度的硼酸根和有机物的抑制作用十分明显. [52] 零价铁+氧化剂 探究NaClO、KMnO4和H2O2对ZVI去除重金属的
影响批处理吸附实验中,ZVI与0.5 mmol·L−1的NaClO、KMnO4或H2O2联用能够快速高效除砷,在初始pH为7.5(±0.1)、液固比为200:1时,1000 µg·L−1的As(Ⅴ)在10 min内几乎完全去除. 柱实验表明,3种氧化剂活化的ZVI柱可稳定除砷,初始As(Ⅴ)浓度为200 µg·L−1时,经NaClO、KMnO4或H2O2活化的ZVI柱处理后,砷流出浓度小于10 µg·L−1. [53] 含铁矿物 磁铁矿 探究pH、接触时间、初始砷浓度、磷酸根等对材料去除As(Ⅲ)和As(Ⅴ)的影响 酸性条件有利于磁铁矿除砷,在pH为2、初始砷浓度为
2 mg·L−1时,材料对As(Ⅲ)和As(Ⅴ)的吸附量均为
3.70 mg·g−1左右;当溶液中磁铁矿纳米颗粒浓度为0.4 g·L−1时,除砷率随磷酸盐浓度的增加而降低.[54] 天然菱铁矿 采用批处理和柱吸附实验研究材料对As(Ⅲ)和As(Ⅴ)的去除 批处理吸附实验中测得材料对As(Ⅴ)和As(Ⅲ)的吸附容量分别为520 µg·g−1和1040 µg·g−1;500 µg·L−1砷溶液经菱铁矿柱处理后,出水砷浓度低于1.0 µg·L−1,材料的砷负载量达
2000 µg·g−1.[55] 改性粒状天然菱
铁矿采用柱实验和现场中试研究材料对As(Ⅲ)的去除 柱实验中,弱酸性和溶液间歇输入有利于As(Ⅲ)的去除,而HCO3-会抑制除砷;中试中材料的砷负载量比柱实验低,高浓度共存阴离子(尤其是HCO3-和SiO44-)、高pH、短接触时间、低温不利于除砷. [56] 水泥-赤铁矿复合材料(CHG) 研究材料对As(Ⅴ)的去除 CHG对As(Ⅴ)的吸附量高达9.84 mg·g−1,略低于多孔赤铁矿,CHG吸附砷后固液分离更简便. [57] 赤铁矿、磁铁矿、针铁矿、富铁红土 研究材料对As(Ⅴ)的去除 富铁红土的除砷效果最好,其次是针铁矿、磁铁矿和赤铁矿;5 g红土处理100 mL浓度为20 mg·L−1 As(Ⅴ)溶液,在10 min内可将砷含量降至10 µg·L−1. [58] 机械活化褐铁矿 研究材料对As(Ⅲ)和As(Ⅴ)的去除 机械活化褐铁矿的粒度小、比表面积大,其对As(Ⅲ)和As(Ⅴ)的吸附容量在pH=7.0时分别为9.14 mg·g−1和8.26 mg·g−1,高于未经活化的褐铁矿. [59] 废铁材料 碳钢渣、不锈钢渣和FeC13改性不锈钢渣 研究材料对As(Ⅲ)的去除 在25 ℃时,碳钢渣、不锈钢渣和FeC13改性不锈钢渣对As(Ⅲ)的最大吸附量分别为12.20、3.17、12.82 mg·g−1,FeC13改性不锈钢渣可产生更多孔结构和更大比表面积. [60] 高炉渣 研究材料对As(Ⅲ)的去除 Langmuir吸附等温线表明,在25 ℃、1 mg·L−1 As(Ⅲ)初始浓度下,高炉渣的最大吸附量为1.40 mg·g−1. [61] 铜渣 研究材料对含砷废水的处理 在Fe/As摩尔比为2.0、温度为80 ℃时,固液反应12 h,用铜渣处理砷浓度为10230 mg·L−1的酸性废水,砷脱除率为97.86%,主要通过生成臭葱石除砷. [62] 铸铁加工研磨粉尘和铸铁丸 研究材料对As(Ⅲ)和As(Ⅴ)的去除 铸铁加工研磨粉尘对As(Ⅲ)和As(Ⅴ)最大吸附量分别为212.89 mg·g−1和82.44 mg·g−1;铸铁丸对As(Ⅲ)和As(Ⅴ)吸附量分别为23.83 mg·g−1和4.08 mg·g−1;pH值为3.0—10.5时,材料对砷的去除率随pH增加而降低. [63] 表 2 常见的流体模型模拟
Table 2. Common fluid models
流体模型分类
Classification of fluid models模型主要方程或原理
The main equation or principle of the model模型运用
Application of the model文献
Reference对流-扩散方程(CDE) $\dfrac{\text{∂}C}{\text{∂}t}=\dfrac{{D}_{\text{L}}}{{R}_{\text{f}}}\dfrac{{\text{∂}}^{\text{2}}{C}}{\text{∂}{{x}}^{\text{2}}}{-}\dfrac{{{V}}_{\text{X}}}{{{R}}_{\text{f}}}\dfrac{\text{∂}C}{\text{∂}x} $
式中,C为污染物浓度(mg·L−1);Vx为达西速度(cm·s−1);t为溶质流经柱的时间(s);x为沿Vx方向流动方向上的坐标,DL为各污染物的纵向分散系数(cm2·s−1);Rf为延迟因子对流-扩散方程是等温一维连续性方程,可从数学上描述柱实验中砷污染物的迁移,通过绘制进出口污染物浓度与孔隙体积的比值,得到污染物的穿透曲线. [85] 人工神经网络吸附建模 ${ {z} }_{\text{1j} }\text{=}\dfrac{ {T} }{ { {T} }_{\text{max} } }{ {w} }_{\text{1j1} }+\dfrac{\text{pH} }{ {\text{pH} }_{\text{max} } }{w}_{\text{1j2} }+\dfrac{{t} }{ {{t} }_{\text{max} } }{ {w} }_{\text{1j3} }+\dfrac{ {\text{[As]} }_{\text{0} } }{ {\text{[As]} }_{\text{0,max} } }{w}_{\text{1j4} }+{ {b} }_{\text{1j} }$ ${y}_{1j}={f}_{ANNs}\left({z}_{1j}\right),j=1,\dots ,{n}_{hid} $
式中:fANNs是人工神经网络的激活函数;w是权重因子;b是偏差因子;nhid是神经网络的隐含神经元(即处理单元)的数目;[As]0是砷初始浓度;T是温度;t是时间;pH是溶液pH值传统吸附方程与人工神经网络混合模型模拟不同pH和温度条件下的砷去除. 在混合模型中,神经网络用于估计动力学和等温线方程的参数,作为吸附过程中涉及的独立变量的函数,混合模型提高了吸附模型在不同操作情况下拟合和预测吸附剂性能的能力. [86] 基于表面过剩理论的二维对流-扩散方程 ${n}_{\text{1}}^{\text{ea}}={n}_{\text{1}}^{\text{e}}\text{-}\dfrac{{m}_{\text{1}}{x}_{\text{1}}{(S-1)}}{{{Sx}}_{\text{1}}+({m}_{\text{1}}\text{/}{m}_{\text{2}}\text{)}{x}_{\text{2}}} $
式中: 为溶质的实际表面过量(g·g−1);${n }_{\text{1} }^{\text{ea} }$ 为平衡表面过量(g·g−1);x1为溶质的体积相质量分数,x2为溶剂的吸附相质量分数;m1为单层覆盖砷物种(mg·g−1);m2为单层覆盖溶剂(mg·g−1);选择性项S用于表示溶质在液相和吸附相中的相对分布${n }_{\text{1} }^{\text{e} }$ 模拟金属离子吸附行为时,采用有限差分法,对包含表面过剩变量的二维对流-扩散方程和扩散系数方程进行数值求解,确定吸附柱中的穿透特性;孔隙率、选择性、流速和吸附系数等参数对吸附柱穿透时间有显著影响. [87] 多组分溶质迁移模型 $R=\dfrac{\textit{α}{\textit{θ}}_{\text{x}}}{{\textit{θ}}_{\text{x}}+{\textit{θ}}_{\text{w}}}\text{(}{\left[{{C}}_{{i}}\right]}_{{y}}-{\left[{{C}}_{{i}}\right]}_{{z}}\text{)} $
式中:R是某浓度差下的反应交换速率(孔隙与生物相/孔隙水与土壤基质/基质相与生物相);α是交换系数;θ是比容(θw是流动相,θx是生物相或基质相);Ci是浓度(y、z代表孔隙水相/生物相/基质相)模型可用在氧化还原生物化学过程中预测砷、铁、硝酸盐和其它物种在地下水系统中的运移. [88] HM-1D化学迁移和形态模型 HM-1D模型是模拟一维化学迁移和物种形成(水络合、表面络合和沉淀/溶解反应)的模型,并能模拟动力学控制过程,多组分平衡反应的一维平流-弥散输送用直接替换法求解,而表面络合用三层模型模拟 HM-1D模型能较好地描述砷在ZVI及其腐蚀产物表面的吸附. [89] PHREEQC模拟软件 使用PHREEQC计算机程序中的Dzombak和Morel吸附模型模拟表面络合过程;纳米零价铁简化为核壳结构,核为零价铁,壳为铁氧化物 可模拟As(Ⅴ)在纳米ZVI上的表面络合行为,也可预测纳米ZVI对不同砷物种的去除效率. [90] -
[1] AKHAVAN A, GOLCHIN A. Estimation of arsenic leaching from Zn-Pb mine tailings under environmental conditions [J]. Journal of Cleaner Production, 2021, 295: 126477. doi: 10.1016/j.jclepro.2021.126477 [2] BUNDSCHUH J, SCHNEIDER J, ALAM M A, et al. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts [J]. Science of the Total Environment, 2021, 780: 146274. doi: 10.1016/j.scitotenv.2021.146274 [3] GONG Y W, QU Y J, YANG S H, et al. Status of arsenic accumulation in agricultural soils across China (1985-2016) [J]. Environmental Research, 2020, 186: 109525. doi: 10.1016/j.envres.2020.109525 [4] UDOVIC M, LESTAN D. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: Remediation efficiency and soil impact [J]. Chemosphere, 2012, 88(6): 718-724. doi: 10.1016/j.chemosphere.2012.04.040 [5] 黄安林, 刘桂华, 柴冠群, 等. 不同钝化材料对农田土壤中砷的钝化效果研究 [J]. 中国农学通报, 2021, 37(1): 100-107. doi: 10.11924/j.issn.1000-6850.casb20200200152 HUANG A L, LIU G H, CHAI G Q, et al. Effect of different passivation materials on arsenic in farmland soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 100-107(in Chinese). doi: 10.11924/j.issn.1000-6850.casb20200200152
[6] REBOREDO F H, PELICA J, LIDON F C, et al. The tolerance of eucalyptus globulus to soil contamination with arsenic [J]. Plants, 2021, 10(4): 627. doi: 10.3390/plants10040627 [7] 叶文玲, 周于杰, 晏士玮, 等. 微生物成矿技术在环境砷污染治理中的应用研究进展 [J]. 土壤学报, 2021, 58(4): 862-875. YE W L, ZHOU Y J, YAN S W, et al. Advancement of research on application of microbial mineralization technology in remediation of arsenic contaminated environment [J]. Acta Pedologica Sinica, 2021, 58(4): 862-875(in Chinese).
[8] GOVARTHANAN M, MYTHILI R, SELVANKUMAR T, et al. Myco-phytoremediation of arsenic- and lead-contaminated soils by helianthus annuus and wood rot fungi, trichoderma sp. isolated from decayed wood [J]. Ecotoxicology and Environmental Safety, 2018, 151: 279-284. doi: 10.1016/j.ecoenv.2018.01.020 [9] YAO W K, CAI Z P, SUN S Y, et al. Electrokinetic-enhanced remediation of actual arsenic-contaminated soils with approaching cathode and Fe0 permeable reactive barrier [J]. Journal of Soils and Sediments, 2020, 20(3): 1526-1533. doi: 10.1007/s11368-019-02459-4 [10] MOREIRA V R, LEBRON Y, SANTOS L, et al. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes [J]. Process Safety and Environmental Protection, 2021, 148: 604-623. doi: 10.1016/j.psep.2020.11.033 [11] OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation [J]. Chemosphere, 2014, 111: 243-259. doi: 10.1016/j.chemosphere.2014.03.112 [12] 赵景联. 环境修复原理与技术[M]. 北京: 化学工业出版社, 2006: 46-48. ZHAO J L. Principle and technology of environmental remediation [M]. Beijing: Chemical Industry Press, 2006: 46-48 (in Chinese).
[13] TROIS C, CIBATI A. South African sands as a low cost alternative solution for arsenic removal from industrial effluents in permeable reactive barriers: column tests [J]. Chemical Engineering Journal, 2015, 259: 981-989. doi: 10.1016/j.cej.2014.08.063 [14] 丁雪军, 安太成, 傅家谟, 等. 柱撑粘土复合材料的研究进展及其在环境污染物治理方面的应用 [J]. 地球化学, 2005, 34(6): 626-634. doi: 10.19700/j.0379-1726.2005.06.010 DING X J, AN T C, FU J M, et al. Study situation of pillared clay and its applications in the environmental pollutants treatment [J]. Geochimica, 2005, 34(6): 626-634(in Chinese). doi: 10.19700/j.0379-1726.2005.06.010
[15] ARNAMWONG S, SUKSABYE P, THIRAVETYAN P. Using kaolin in reduction of arsenic in rice grains: Effect of different types of kaolin, pH and arsenic complex [J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 556-561. doi: 10.1007/s00128-016-1740-8 [16] DOUŠOVÁ B, LHOTKA M, GRYGAR T, et al. In situ co-adsorption of arsenic and iron/manganese ions on raw clays [J]. Applied Clay Science, 2011, 54(2): 166-171. doi: 10.1016/j.clay.2011.08.004 [17] 夏华, 王方正. 高岭石/有机插层复合物[C]//第五届中国功能材料及其应用学术会议论文集Ⅱ. 北京·秦皇岛, 2004: 1132-1139. XIA H, WANG F Z. Kaolinite/organic intercalation complexes[C]: Proceedings of The Fifth China National Conference on Functional Materials and ApplicationsⅡ, Beijing·Qinghuangdao, 2004: 1132-1139 (in Chinese).
[18] LIN S H, JUANG R S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite [J]. Journal of Hazardous Materials, 2002, 92(3): 315-326. doi: 10.1016/S0304-3894(02)00026-2 [19] SHABANI E, SALIMI F, JAHANGIRI A. Removal of arsenic and copper from water solution using magnetic iron/bentonite nanoparticles (Fe3O4/bentonite) [J]. Silicon, 2019, 11(2): 961-971. doi: 10.1007/s12633-018-9895-z [20] MICHAEL-LEO D C, KHRYSLYN A, EDEN-MAY D P, et al. Nanoclay-supported zero-valent iron as an efficient adsorbent material for arsenic [J]. Advanced Materials Research, 2013, 686: 296-304. doi: 10.4028/www.scientific.net/AMR.686.296 [21] BARAKAN S, AGHAZADEH V, BEYRAGH A S, et al. Thermodynamic, kinetic and equilibrium isotherm studies of As(V) adsorption by Fe(III)-impregnated bentonite [J]. Environment, Development and Sustainability, 2020, 22(6): 5273-5295. doi: 10.1007/s10668-019-00424-2 [22] BUZETZKY D, TÓTH N C, NAGY N M, et al. Application of modified bentonites for arsenite(III) removal from drinking water [J]. Periodica Polytechnica Chemical Engineering, 2018, 63(1): 113-121. doi: 10.3311/PPch.12197 [23] 王楠, 梁成华, 杜立宇, 等. 柱撑蒙脱石对水中砷(V)的吸附研究 [J]. 工业水处理, 2009, 29(7): 31-35. WANG N, LIANG C H, DU L Y, et al. Adsorption of arsenate aqueous solutions by polymeric Al/Fe modified montmorillonite [J]. Industrial Water Treatment, 2009, 29(7): 31-35(in Chinese).
[24] NA P, JIA X M, YUAN B, et al. Arsenic adsorption on Ti-pillared montmorillonite [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(5): 708-714. [25] MISHRA T, MAHATO D K. A comparative study on enhanced arsenic(Ⅴ) and arsenic(Ⅲ) removal by iron oxide and manganese oxide pillared clays from ground water [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 1224-1230. doi: 10.1016/j.jece.2016.01.022 [26] PENG X J, LUAN Z K, ZHANG H M, et al. Zirconia pillared montmorillonite for removal of arsenate from water [J]. Journal of Environmental Science and Health, Part A, 2005, 40(5): 1055-1067. doi: 10.1081/ESE-200056159 [27] 陈亚. 粘土矿物强化零价铁去除废水中重金属污染物的作用研究[D]. 宁波: 宁波大学, 2015. 58-59. CHEN Y. Enhanced removal of heavy metals from wastewater by using the mixture of zero-valent iron and clay minerals[D]. Ningbo: Ningbo University, 2015. 58-59 (in Chinese).
[28] 谌建宇, 许振成, 骆其金, 等. 应用可渗透反应墙技术修复受污染河水水质的研究 [J]. 中国给水排水, 2009, 25(9): 5-7+11. CHEN J Y, XU Z C, LUO Q J, et al. Application of permeable reactive barrier for remediation of polluted river water [J]. China Water & Wastewater, 2009, 25(9): 5-7+11(in Chinese).
[29] YANG J J, MA T X, LI X Q, et al. Removal of heavy metals and metalloids by amino‐modified biochar supporting nanoscale zero-valent iron [J]. Journal of Environmental Quality, 2018, 47(5): 1196-1204. doi: 10.2134/jeq2017.08.0320 [30] BONI M, MARZEDDU S, TATTI F, et al. Experimental and numerical study of biochar fixed bed column for the adsorption of arsenic from aqueous solutions [J]. Water, 2021, 13(7): 915. doi: 10.3390/w13070915 [31] SRIVASTAV A L, PHAM T D, IZAH S C, et al. Biochar adsorbents for arsenic removal from water environment: a review [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(4): 616-628. doi: 10.1007/s00128-021-03374-6 [32] ALKURDI S S A, HERATH I, BUNDSCHUH J, et al. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? [J]. Environment International, 2019, 127: 52-69. doi: 10.1016/j.envint.2019.03.012 [33] AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge [J]. Journal of Environmental Management, 2014, 133: 309-314. [34] DONG X L, MA L Q, GRESS J, et al. Enhanced Cr(Ⅵ) reduction and As(Ⅲ) oxidation in ice phase: Important role of dissolved organic matter from biochar [J]. Journal of Hazardous Materials, 2014, 267: 62-70. doi: 10.1016/j.jhazmat.2013.12.027 [35] ZHANG M, GAO B, YAO Y, et al. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions [J]. Chemical Engineering Journal, 2012, 210: 26-32. doi: 10.1016/j.cej.2012.08.052 [36] ZHANG M, GAO B, YAO Y, et al. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition [J]. Chemosphere, 2013, 92(8): 1042-1047. doi: 10.1016/j.chemosphere.2013.02.050 [37] KORNILOVYCH B, WIREMAN M, UBALDINI S, et al. Uranium removal from groundwater by permeable reactive barrier with zero-valent iron and organic carbon mixtures: laboratory and field studies [J]. Metals, 2018, 8(6): 408. doi: 10.3390/met8060408 [38] 何培芬. 丝瓜络作为模拟可渗透反应墙介质处理地下水中硝酸盐研究[D]. 广州: 广州大学, 2019. 73-74. HE P F. Study on removal of nitrogen from groundwater by loofah sponge solid carbon as simulate permeable reactive barrier media[D]. Guangzhou: Guangzhou University, 2019. 73-74 (in Chinese).
[39] CHEN X J, YANG L C, ZHANG J F, et al. Exploration of As(Ⅲ)/As(Ⅴ) uptake from aqueous solution by synthesized calcium sulfate whisker [J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1340-1346. [40] JIA C Y, WU L C, CHEN Q S, et al. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution [J]. Chemosphere, 2020, 255: 126936. doi: 10.1016/j.chemosphere.2020.126936 [41] FUKUSHI K, MUNEMOTO T, SAKAI M, et al. Monohydrocalcite: A promising remediation material for hazardous anions [J]. Science and Technology of Advanced Materials, 2011, 12(6): 064702. doi: 10.1088/1468-6996/12/6/064702 [42] DAVIS A, WEBB C, DIXON D, et al. Arsenic removal from drinking water by limestone-based material [J]. Mining Engineering, 2007, 59(2): 71-74. [43] SALAMEH Y, ALBADARIN A B, ALLEN S, et al. Arsenic(III, V) adsorption onto charred dolomite: Charring optimization and batch studies [J]. Chemical Engineering Journal, 2015, 259: 663-671. doi: 10.1016/j.cej.2014.08.038 [44] TATSUHARA T, ARIMA T, IGARASHI T, et al. Combined neutralization-adsorption system for the disposal of hydrothermally altered excavated rock producing acidic leachate with hazardous elements [J]. Engineering Geology, 2012, 139/140: 76-84. doi: 10.1016/j.enggeo.2012.04.006 [45] KUNDU S, PAL A, MANDAL M, et al. Hardened paste of portland cement: A new low-cost adsorbent for the removal of arsenic from water [J]. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(1): 185-202. [46] TANGVIROON P, ENDO Y, FUJINAKA R, et al. Change in arsenic leaching from silty soil by adding slag cement [J]. Water, Air, & Soil Pollution, 2020, 231(6): 259. [47] 李志建, 魏丽, 倪恒. 零价铁可渗透反应屏障钝化和堵塞研究进展及案例分析 [J]. 环境工程, 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031 LI Z J, WEI L, NI H. Research advances and case study on passivation and clogging in permeable reactive barrier(PRB) [J]. Environmental Engineering, 2022, 40(2): 206-213,224(in Chinese). doi: 10.13205/j.hjgc.202202031
[48] WANG Y, PLEASANT S, JAIN P, et al. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills [J]. Waste Management, 2016, 53: 128-135. doi: 10.1016/j.wasman.2016.02.018 [49] KLAS S, KIRK D W. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron [J]. Journal of Hazardous Materials, 2013, 252/253: 77-82. doi: 10.1016/j.jhazmat.2013.02.044 [50] RAO P H, MAK M S H, LIU T Z, et al. Effects of humic acid on arsenic(Ⅴ) removal by zero-valent iron from groundwater with special references to corrosion products analyses [J]. Chemosphere, 2009, 75(2): 156-162. doi: 10.1016/j.chemosphere.2008.12.019 [51] KÖBER R, WELTER E, EBERT M, et al. Removal of arsenic from groundwater by zerovalent iron and the role of sulfide [J]. Environmental Science & Technology, 2005, 39(20): 8038-8044. [52] BITERNA M, ANTONOGLOU L, LAZOU E, et al. Arsenite removal from waters by zero valent iron: Batch and column tests [J]. Chemosphere, 2010, 78(1): 7-12. doi: 10.1016/j.chemosphere.2009.10.007 [53] GUO X J, YANG Z, DONG H Y, et al. Simple combination of oxidants with zero-valent-iron(ZVI) achieved very rapid and highly efficient removal of heavy metals from water [J]. Water Research, 2016, 88: 671-680. doi: 10.1016/j.watres.2015.10.045 [54] CHOWDHURY S R, YANFUL E K. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles [J]. Water and Environment Journal, 2011, 25(3): 429-437. doi: 10.1111/j.1747-6593.2010.00242.x [55] GUO H M, STÜBEN D, BERNER Z A. Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) from groundwater using natural siderite as the adsorbent [J]. Journal of Colloid and Interface Science, 2007, 315(1): 47-53. doi: 10.1016/j.jcis.2007.06.035 [56] LI F L, GUO H M, ZHAO K, et al. Modeling transport of arsenic through modified granular natural siderite filters for arsenic removal [J]. Geoscience Frontiers, 2019, 10(5): 1755-1764. doi: 10.1016/j.gsf.2018.12.002 [57] XU W Y, YANG B Q, JIA F F, et al. Removal of As(V) from aqueous solution by using cement-porous hematite composite granules as adsorbent [J]. Results in Physics, 2018, 11: 23-29. doi: 10.1016/j.rinp.2018.08.031 [58] AREDES S, KLEIN B, PAWLIK M. The removal of arsenic from water using natural iron oxide minerals [J]. Journal of Cleaner Production, 2013, 60: 71-76. doi: 10.1016/j.jclepro.2012.10.035 [59] YAN X L, SHAO J Q, WEN Q Q, et al. Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms [J]. Science of the Total Environment, 2020, 708: 135118. doi: 10.1016/j.scitotenv.2019.135118 [60] SHI W, LI H, LIAO G, et al. Carbon steel slag and stainless steel slag for removal of arsenic from stimulant and real groundwater [J]. International Journal of Environmental Science and Technology, 2018, 15(11): 2337-2348. doi: 10.1007/s13762-017-1603-9 [61] KANEL S R, CHOI H, KIM J Y, et al. Removal of arsenic(III) from groundwater using low-cost industrial by-products-blast furnace slag [J]. Water Quality Research Journal, 2006, 41(2): 130-139. doi: 10.2166/wqrj.2006.015 [62] LI Y K, ZHU X, QI X J, et al. Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag [J]. Journal of Cleaner Production, 2020, 270: 122428. doi: 10.1016/j.jclepro.2020.122428 [63] CHOI N C, KIM S B, KIM S O, et al. Removal of arsenate and arsenite from aqueous solution by waste cast iron [J]. Journal of Environmental Sciences, 2012, 24(4): 589-595. doi: 10.1016/S1001-0742(11)60786-9 [64] ELJAMAL O, SASAKI K, TSURUYAMA S, et al. Kinetic model of arsenic sorption onto zero-valent iron (ZVI) [J]. Water Quality, Exposure and Health, 2011, 2(3): 125-132. [65] NJARAMBA L K, PARK J B, LEE C S, et al. Permeable reactive barriers with zero-valent iron and pumice for remediation of groundwater contaminated with multiple heavy metals [J]. Environmental Engineering Science, 2021, 38(4): 245-255. doi: 10.1089/ees.2020.0109 [66] WILOPO W, SASAKI K, HIRAJIMA T, et al. Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure [J]. Materials Transactions, 2008, 49(10): 2265-2274. doi: 10.2320/matertrans.M-MRA2008827 [67] SHIPLEY H J, YEAN S J, KAN A T, et al. Adsorption of arsenic to magnetite nanoparticles: Effect of particle concentration, pH, ionic strength, and temperature [J]. Environmental Toxicology and Chemistry, 2009, 28(3): 509-515. doi: 10.1897/08-155.1 [68] LIANG Q Q, ZHAO D Y. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles [J]. Journal of Hazardous Materials, 2014, 271: 16-23. doi: 10.1016/j.jhazmat.2014.01.055 [69] GUO H M, STÜBEN D, BERNER Z. Arsenic removal from water using natural iron mineral-quartz sand columns [J]. Science of the Total Environment, 2007, 377(2/3): 142-151. [70] ZHAO K, GUO H M, ZHOU X Q. Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: Characterization and behaviors [J]. Applied Geochemistry, 2014, 48: 184-192. doi: 10.1016/j.apgeochem.2014.07.016 [71] MAMINDY-PAJANY Y, HUREL C, MARMIER N, et al. Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility [J]. Desalination, 2011, 281: 93-99. doi: 10.1016/j.desal.2011.07.046 [72] WANG S S, GAO B, ZIMMERMAN A R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite [J]. Bioresource Technology, 2015, 175: 391-395. doi: 10.1016/j.biortech.2014.10.104 [73] 邵金秋, 温其谦, 阎秀兰, 等. 天然含铁矿物对砷的吸附效果及机制 [J]. 环境科学, 2019, 40(9): 4072-4080. doi: 10.13227/j.hjkx.201903023 SHAO J Q, WEN Q Q, YAN X L, et al. Adsorption and mechanism of arsenic by natural iron-containing minerals [J]. Environmental Science, 2019, 40(9): 4072-4080(in Chinese). doi: 10.13227/j.hjkx.201903023
[74] OH B T, LEE J Y, YOON J. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag [J]. Environmental Geochemistry and Health, 2007, 29(4): 331-336. doi: 10.1007/s10653-007-9094-0 [75] AHN J S, CHON C M, MOON H S, et al. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems [J]. Water Research, 2003, 37(10): 2478-2488. doi: 10.1016/S0043-1354(02)00637-1 [76] LI Y K, ZHU X, QI X J, et al. Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel [J]. Chemical Engineering Journal, 2020, 394: 124833. doi: 10.1016/j.cej.2020.124833 [77] LUUKKONEN T, RUNTTI H, NISKANEN M, et al. Simultaneous removal of Ni(Ⅱ), As(Ⅲ), and Sb(Ⅲ) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers [J]. Journal of Environmental Management, 2016, 166: 579-588. doi: 10.1016/j.jenvman.2015.11.007 [78] KENNEKE J F, MCCUTCHEON S C. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer [J]. Environmental Science & Technology, 2003, 37(12): 2829-2835. [79] KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environmental Science & Technology, 2005, 39(5): 1291-1298. [80] LIU C H, CHUANG Y H, CHEN T Y, et al. Mechanism of arsenic adsorption on magnetite nanoparticles from water: Thermodynamic and spectroscopic studies [J]. Environmental Science & Technology, 2015, 49(13): 7726-7734. [81] PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream [J]. Water Research, 2016, 106: 295-303. doi: 10.1016/j.watres.2016.10.006 [82] KIM J H, CHANG B, KIM B J, et al. Applicability of weathered coal waste as a reactive material to prevent the spread of inorganic contaminants in groundwater [J]. Environmental Science and Pollution Research, 2020, 27(36): 45297-45310. doi: 10.1007/s11356-020-10418-7 [83] LI Y, ZHANG F S, XIU F R. Arsenic(Ⅴ) removal from aqueous system using adsorbent developed from a high iron-containing fly ash [J]. Science of the Total Environment, 2009, 407(21): 5780-5786. doi: 10.1016/j.scitotenv.2009.07.017 [84] ALTUNDOĞAN H S, ALTUNDOĞAN S, TÜMEN F, et al. Arsenic adsorption from aqueous solutions by activated red mud [J]. Waste Management, 2002, 22(3): 357-363. doi: 10.1016/S0956-053X(01)00041-1 [85] ZHOU L, DONG F Q, LIU J, et al. Coupling effect of Fe3+(aq) and biological, nano-sized FeS-coated limestone on the removal of redox-sensitive contaminants(As, Sb and Cr): Implications for in situ passive treatment of acid mine drainage [J]. Applied Geochemistry, 2017, 80: 102-111. doi: 10.1016/j.apgeochem.2017.03.005 [86] RODRÍGUEZ-ROMERO J A, MENDOZA-CASTILLO D I, REYNEL-ÁVILA H E, et al. Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103928. doi: 10.1016/j.jece.2020.103928 [87] RAHAMAN M S, OMI F R, BASU A. Experimental and numerical modelling of arsenic adsorption in fixed-bed dynamic columns packed with Atlantic cod fish scales [J]. The Canadian Journal of Chemical Engineering, 2015, 93(11): 2024-2030. doi: 10.1002/cjce.22294 [88] RAZZAK A, JINNO K, HIROSHIRO Y, et al. Mathematical modeling of biologically mediated redox processes of iron and arsenic release in groundwater [J]. Environmental Geology, 2009, 58(3): 459-469. doi: 10.1007/s00254-008-1517-4 [89] TYROVOLA K, PEROULAKI E, NIKOLAIDIS N P. Modeling of arsenic immobilization by zero valent iron [J]. European Journal of Soil Biology, 2007, 43(5/6): 356-367. [90] RASHID U S, SAINI-EIDUKAT B, BEZBARUAH A N. Modeling arsenic removal by nanoscale zero-valent iron [J]. Environmental Monitoring and Assessment, 2020, 192(2): 110. doi: 10.1007/s10661-020-8075-y [91] WILKIN R T, ACREE S D, ROSS R R, et al. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies [J]. Journal of Contaminant Hydrology, 2009, 106(1/2): 1-14. [92] BEAULIEU B, RAMIREZ R E. Arsenic remediation field study using a sulfate reduction and zero-valent iron PRB [J]. Groundwater Monitoring & Remediation, 2013, 33(2): 85-94. [93] LUDWIG R D, SMYTH D J A, BLOWES D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB [J]. Environmental Science & Technology, 2009, 43(6): 1970-1976. [94] LI Y, HUANG Y B, WU W S, et al. Research and application of arsenic-contaminated groundwater remediation by manganese ore permeable reactive barrier [J]. Environmental Technology, 2021, 42(13): 2009-2020. doi: 10.1080/09593330.2019.1687587 [95] STOYAN G, PLAMEN G, IRENA S, et al. Cleanup of acid mine drainage by means of a pilot-scale passive system [J]. Annual of the University of Mining and Geology “ST. Ivan Rilski”, Part I, Geology and Geophysics, 2005, 48: 217-220.