-
作为环境中一类重要的污染物,人工合成麝香(Synthetic musks,SMs)越来越受到研究人员和公众的关注. 与天然麝香相比,SMs价格低廉,易于获取,被广泛用于家庭和个人护理产品,例如香水、洗衣液、化妆品、香皂等[1]. SMs是一类半挥发性有机化合物,具有高的辛醇-水分配系数(lgKow值高于5),并且其化学亲脂性使其易于从水相中吸附到固相沉积物或土壤中,随后通过生物累积富集到生物体中[2]. SMs可分为三大类:硝基麝香(nitro musk)、多环麝香(polycyclic musk)和大环麝香(macrocyclic musk). 大多数硝基麝香,包括二甲苯麝香(musk xylene,MX)和酮麝香(musk ketone,MK),由于对健康和环境潜在的负面影响,于20世纪末已在几个国家被禁止使用[3- 4],但由于其致癌性、持久性和生物累积性,硝基麝香仍然是SMs的一个重要群体,并继续成为热点主题. 多环麝香于20世纪60年代首次开发,很快成为硝基麝香的替代品. 最常见的两种多环麝香是吐纳麝香(tonalide,AHTN)和佳乐麝香(galaxolide,HHCB)[5],约占多环麝香市场的95%,并且其结构稳定,不易降解[6]. 在中国,个人护理产品中的HHCB和AHTN分别占到73%和65%[7]. 大环麝香的合成成本高,不如多环麝香普遍,其用途仅限于香水行业,因此只占据人工合成麝香市场的3%—4%[8]. 与硝基麝香和多环麝香相比,大环麝香的生态毒性和神经毒性研究才刚刚开始,尚未得到系统的结论[9 − 10]. 由于SMs主要用于日用品,90%以上家庭使用的SMs会进入市政污水处理厂,最终迁移到环境中[11]. 目前已经在沉积物、水体、土壤和空气等多种环境介质中检测到SMs,同时也在人体、鱼类等生物样品中检出[12 − 15]. 虽然由于其生物积累性、亲脂性、持久性和高赋存水平,已受到广泛关注[16 − 17],但对南极地区的SMs却很少报道.
南极曾被认为是地球上的净土,但近年来相关研究表明,在南极洲的土壤中发现了多种有机污染物[18 − 21]. 这些有机污染物,多数是持久性有机污染物,如有机氯农药、六氯环己烷多氯联苯和多溴联苯醚,其来源主要是远距离大气输送(LRAT)或附近区域的人为活动[22]. 持久性有机污染物具有亲脂性,易在生物体中富集,Ko等[23]从南极采集了鱼类和无脊椎动物样本,并分析了持久性有机污染物,包括多环芳烃、有机氯农药和多溴二苯醚,发现南极生物群样本中的POPs水平有机氯农药最高,多环芳烃次之,多溴二苯醚最低. 持久性有机污染物的生物放大作用可能比南极环境中的生物浓缩作用小. 除了南极洲短食物链中每组持久性有机污染物的来源、运输、暴露和吸收外,物种之间的生物变异、相互作用的栖息地、饮食和代谢也是未来污染物生物累积研究的因素. 此外,全球气候变化也会影响污染物的迁移与分布,南极洲被视为持久性有机污染物的冷阱,这些污染物在热带或温带地区跟随大气交换进入到空气中进行远距离传输,而到达南极地区时,由于温度低而发生沉降,这使得持久性有机污染物对南极生态环境产生的潜在风险逐渐升级[24].
本研究在南极长城站采集土壤、沉积物和企鹅粪便样品,共16个,分析了4种SMs的分布及污染情况,进行污染来源分析,并与近年来其他区域SMs的含量进行了比较;另外,运用风险熵对其潜在的生态风险进行评价,本研究结果将对极地地区SMs的污染水平、分布特征、环境风险提供数据支持.
-
本实验主要检测了四种SMs,2种多环麝香HHCB和AHTN,两种硝基麝香MX和MK. 4种标准品均购自德国Dr. Ehrenstorfer公司. 正己烷、二氯甲烷和甲醇均为HPLC级别,购自德国Merck公司.
-
样品采集地点为南极长城站以及附近的乌拉圭站、俄国站等16个点位,具体点位如图1所示,样品采集时间为2019年12月. 按照文献报道的方法[25]对样品进行前处理,步骤如下:称取干燥后的样品(2.5 g,干重, dw),加入5 μL荧蒽-d10(1 μg·mL−1)做为方法回收率指示物,再加入15 g无水硫酸钠均匀混合,置于索氏提取器中,60 ℃下用105 mL正己烷∶二氯甲烷(1∶1,V∶V)混合溶剂提取样品24 h. 然后向提取物中加入盐酸活化的铜粉以去除硫对检测的影响. 再将萃取液旋转蒸发至剩余体积为1—2 mL,用硅胶-氧化铝复合层析柱(由下往上依次填充12 cm硅胶,6 cm中性氧化铝,2 cm无水硫酸钠)净化. 层析柱先用5 mL正己烷活化,然后将浓缩液转移至层析柱中,依次用5 mL正己烷、20 mL正己烷:二氯甲烷(2∶1,V∶V)、30 mL正己烷∶二氯甲烷(1∶2,V∶V)和30 mL正己烷∶二氯甲烷(1∶3,V∶V)洗脱分析物,将所有洗脱液收集,浓缩定容至1 mL,然后加入5 ng 13C6-六氯苯,混匀后进行仪器分析.
-
样品采用气相色谱-质谱联用系统(Agilent 7890A-7000B)分析. 对样品选择DB-5MS石英毛细管柱(30 m × 0.25 mm × 0.25 µm)进行分离,程序升温如下设置:初始温度100 ℃,保持1 min;以30 ℃·min−1的速率升温到170 ℃;然后以1 ℃·min−1的速率升温到180 ℃,保持2 min;最后,以30 ℃·min−1的速率升温到300 ℃,保持2 min,整个样品运行时间为21.33 min. 进样口的温度为250 ℃,采用不分流进样模式,进样量1 µL. 质谱仪参数,四极杆温度150 ℃,离子源温度230 ℃,传输线温度280 ℃. 离子源为电子轰击(EI)源,采用选择离子检测模式(SIM)进行定性定量分析,定量离子和定性离子信息见表1.
-
样品前处理过程中,为识别任何可能的交叉污染,每批10个样品会跟随1个空白样品(去离子水和无水硫酸钠). 在空白样品中没有检测到4种SMs. 配制浓度为0.8—200 ng·mL−1的标准工作溶液,经过仪器分析得到标准工作曲线,4种SMs的相关系数均 > 0.999. 定量分析利用工作曲线进行. 计算得到样品回收率指示物荧蒽-d10的回收率范围在80%—110%之间,满足要求,无需进行回收率校正. SMs在沉积物中的回收率为92.4%—109.0%. 方法检测限(MDL)为3倍信噪比,方法定量限(MQL)定义为10倍信噪比,本方法的稀释倍数为0.4. 在空白沉积物样品中,添加水平分别为5 、10 、100 ng·g−1 标准溶液,做平行样5次,验证方法的准确性和重复性. 回收率和标准偏差数据见表1.
-
使用Arcgis10.0绘制SMs位点分布图. 采用SPSS 17.0软件进行统计分析,Spearman秩相关检验用于HHCB和AHTN之间的相关性分析,当P <0.05时认为具有显著相关性.
-
对研究区域内16个取样点位的沉积物和土壤中的4种人工麝香(HHCB、AHTN、MX、MK)的分布情况进行调查,所有样品中均未检出硝基麝香(MX和MK),大部分样品中均检出多环麝香(HHCB和AHTN),详细信息见表2.
南极沉积物和土壤中检出的两种主要的人工麝香为多环麝香:HHCB和AHTN,两种污染物的总含量ƩSMs的范围为ND—27.99 ng·g−1 dw,平均值为10.97 ng·g−1 dw,中位数为10.43 ng·g−1 dw,低于珠江入海口(4.54—31.50 ng·g−1 dw)[26]和海河(ND—53.30 ng·g−1 dw,平均:24.80 ng·g−1 dw,中位数:15.80 ng·g−1 dw)[25]的沉积物的含量,比西班牙加泰罗尼亚土壤的含量(5.42—10.04 ng·g−1)[27]高,但都处于同一个数量级范围内. 南极土壤和沉积物中,多环麝香HHCB和AHTN的检出率分别为87.50%和81.25%. HHCB的浓度范围是ND—18.35 ng·g−1 dw,平均值是4.56 ng·g−1 dw. AHTN的浓度范围是ND—21.47 ng·g−1 dw,平均值是6.41 ng·g−1 dw. 如表3所示,与其他区域的含量对比,南极土壤和沉积物中HHCB和AHTN的含量处于中等水平,可能是由于南极地区科考活动的增多和旅游业的开发,人类活动的增多引入的SMs的污染.
-
南极土壤和沉积物16个样品中检出的SMs的分布情况见图2. 其中,HHCB检出率为87.50%,AHTN检出率为81.25%. 整体来看,硝基麝香没有检出,而多环麝香的检出率较高. 分析原因可能是由于硝基麝香近年来已经逐步被取代,环境介质中硝基麝香的检出频率逐步降低;而多环麝香尤其是HHCB和AHTN是目前各种日用品中最重要的两种香味物质,人类在南极大陆的活动不可避免的将其引入南极的环境,并对南极生态系统造成一定的影响. 研究区域内SMs含量最高的点位是取样于企鹅岛山顶的粪土样品(F16),ΣSMs = 27.99 ng·g−1 dw,说明SMs会随着食物链迁移,最终富集到高营养级生物体内,如企鹅,其对南极地区生物的潜在危险值得关注[39]. 有研究表明海洋生物体内含有SMs,并且其体内SMs浓度很大程度上取决于虾、鱼和贝类等海洋生物所生存的环境浓度[40]. SMs具有高的辛醇水分配系数,其化学亲脂性使其易于从水相中吸附到固相的土壤和沉积物中,随后在食物链中得到富集和放大作用. 栖息在南极地区的企鹅处于食物链的顶端,磷虾、鱼类等均可成为其食物,这种捕食行为使得污染物容易在企鹅体内富集,然后通过排泄等方式又将污染物排入环境[41]. 含量次高的点位是F5点位,取自于沙滩沙土,测得的ΣSMs = 20.14 ng·g−1 dw,说明SMs可通过人类的生活和间接途径(主要通过污水处理厂排放)进入到环境中[42 − 43]. F1和F2分别取样于长城站污水口和俄国站垃圾附近,也显示出较高的SMs含量. 有研究显示,来自城市、农业和工业的废水是自然环境中SMs的最主要的来源,工作人员使用的洗护用品随着水流排放,在污水口附近沉积,或者随着人类的活动进入生活垃圾,所以在污水口和垃圾站附近的土壤中发现高浓度的SMs也就不难理解. 比较HHCB和AHTN的含量可以发现,在除F1和F2之外的所有点位中,HHCB的含量较低,AHTN的含量较高,据报道,HHCB在大气远距离传输过程中能够明显被消除,而AHTN显示出更高的大气远距离传输能力[44]. 目前已经在北极和北海的空气中检测到了多环麝香,并且证明了大气输入是极地地区HHCB和AHTN的含量的主要影响因素[44]. 而F1和F2两个点位中HHCB的含量高于AHTN,该结果与其他洗护用品以及污水处理厂中SMs的研究结果一致[45 − 46],说明人类的活动是F1、F2两个点位SMs含量较高的原因. 对沉积物和土壤样品的含量进行分析,ΣSMs在沉积物中的含量范围为5.44—12.65 ng·g−1 dw,平均值为11.25 ng·g−1 dw,略高于土壤中的含量(平均值为10.88 ng·g−1 dw). 有研究表明,在水和沉积物系统中,HHCB和AHTN具有高的辛醇-水分配系数(lgKow > 5),在水中的溶解度低,更容易吸附在水中的悬浮颗粒物上,并在沉积物中累积.
-
为考察南极土壤和沉积物中的SMs的来源和相互关系,本研究对HHCB和AHTN的实验数据进行了Spearman相关性分析. 分析结果表明,本次采集到的南极16个土壤和沉积物样品中的HHCB和AHTN呈现出显著相关性(P < 0.05),说明南极地区HHCB和AHTN可能具有相似的污染来源和暴露途径[26]. 这种强相关性与之前在淡水系统中的研究结果非常类似[47]. 此外,在对鱼类的SMs的研究中也得到了相似的结论,说明这两种化合物被生物体摄入后,也具有类似的生物累积特性[48].
两种多环麝香HHCB和AHTN的含量比值可用于分析环境中SMs污染的来源和环境过程. 此次于2019年采集到的南极土壤和沉积物样品中HHCB/AHTN值的范围为0.30—1.94,平均值为0.58,中值为0.44,详见表2,与相关报道中北海的HHCB/AHTN值接近(0.9—1.7)[44],但低于新加坡的沉积物(4.13± 2.05)[47]和松花江的沉积物(1.7—3.1,平均值为2.3)[30],总体上来看,南极样品中的HHCB/AHTN的值处于较低水平. HHCB在大气传输过程中会被消除[44],而AHTN的大气远距离传输能力较强,南极样品中HHCB/AHTN的值大部分低于1,说明大部分位点的AHTN浓度高于HHCB,进而可推断南极大部分土壤和沉积物样品中的SMs主要是来源于大气远距离传输. 只有F1和F2两个位点HHCB/AHTN的值大于1(F1为1.94,F2未检测到AHTN),说明这两个位点中,SMs的来源主要是来自于人类的活动引入的污染.
-
由于南极土壤和沉积物中的SMs的存在和毒性,会对水生和陆地生物都会产生一定的影响. 本研究中,采用了一种初步的环境风险评估方法来确定风险熵(HQ),如式(1)所示.
式中:
$ \mathrm{M}\mathrm{E}\mathrm{C} $ 为实测环境浓度,ng·g−1,$ \mathrm{P}\mathrm{N}\mathrm{E}\mathrm{C} $ 为预测无效应浓度.式中,NOEC为未观察到的有效浓度,LC50为半数致死剂量或半数最大有效浓度. PNEC通常使用最低的急性毒性数据除以评估因子(AF). 在慢性毒性的情况下,NOEC除以AF被定义为一种长期暴露效应. AF = 10适用于3个营养级的长期NOEC,50适用于2个营养级的长期NOEC,100适用于短期试验中表现出最低LC50的单一长期NOEC[49]. 在此,我们获得了HHCB和AHTN在沉积物中蠓幼虫、两栖类、蠕虫的NOECs和土壤中跳蚤和蚯蚓的NOECs. 因此将AF赋值为10和50分别计算沉积物和土壤的HQ值[50]. 本研究中使用的NOEC值和毒性数据见表4.
HQ < 0.1表示低风险或潜在不利影响;0.1 ≤ HQ < 1表示中度风险或不利影响;HQ ≥ 1表明该化合物的风险较高,应引起注意[49]. 本研究中,计算了南极地区沉积物和土壤的风险熵,结果两种污染物的最大HQ值分别为0.005和0.014,均小于0.1,说明HHCB和AHTN对南极地区的生态风险非常低.
-
南极长城站附近选取16个取样点位,采集了沉积物、土壤和企鹅粪便等样品,对样品中的4种人工合成麝香的含量采用气相色谱质谱法进行分析,得到其空间分布情况,并评估了其生态风险. 所有样品中均未检测到硝基麝香MX和MK,检测到的主要成分为多环麝香HHCB和AHTN. 检出的HHCB和AHTN的含量与其他区域比较,南极地区处于中等水平. 所有样品中,含量最高的点位是取自于企鹅岛山顶的粪土样品,说明SMs会随着食物链进入生物体内富集,然后通过粪便排出体外,对南极的生态环境造成二次污染. 除F1和F2之外的14个位点的样品中,HHCB与AHTN的含量之比小于1,说明AHTN为主要成分,表明大气远距离传输是南极地区SMs的主要来源. 计算HHCB和AHTN的风险熵,其值均小于0.1,说明该类化合物对南极地区的生态风险很小,但考虑到南极人类活动逐渐增多和SMs具有内分泌效应等因素,未来仍需要对南极地区的SMs的污染状况、污染源识别以及生态风险等进行关注和研究.
南极长城站周边土壤、潮间带沉积物和企鹅粪土沉积层中人工合成麝香的分布及生态风险
Distribution and ecological risk of synthetic musks in Antarctica sediments and soils
-
摘要: 人工合成麝香(Synthetic musks,SMs)具有内分泌干扰效应并且其挥发性强,能够通过大气传输到达偏远地区. 本文测定了中国南极长城站沉积物、土壤和企鹅粪便中四种SMs的含量,并分析了其生态风险. 佳乐麝香(Galaxolide,HHCB)和吐纳麝香(Tonalide,AHTN)是样品中的主要SMs,二甲苯麝香(Musk xylene,MX)和酮麝香(Musk ketone,MK)未在样品中检出. 有87.50%的样品检出HHCB,含量为ND—18.35 ng·g−1 dw(干重),平均值为4.56 ng·g−1 dw;有81.25%的样品中检出AHTN,含量为ND—21.47 ng·g−1 dw,平均值为6.41 ng·g−1 dw. 企鹅岛山顶的粪土样品中SMs含量最高,说明SMs可能通过食物链在生物体内富集,并通过排泄物排出. 南极长城站污水口和俄国站垃圾处理厂的两个点位也含有较高含量的SMs,分析其原因可能是由于人类的活动引入的SMs的污染. 有研究表明AHTN比HHCB更容易通过大气进行远距离传输,而在本研究中,分析HHCB和AHTN的含量比发现,大部分样品中AHTN含量都高于HHCB,说明大气沉降是南极地区SMs的主要来源. 而长城站污水口和俄国垃圾处理厂两个点位HHCB的含量高于AHTN,进一步说明这两个点位SMs主要来源于科考人员的活动. 对沉积物进行风险评估,检出的两种SMs的风险熵值均小于0.1,表明从理论上来说这两种污染物不会对南极生态环境造成显著影响.Abstract: Synthetic musks (SMs) have endocrine disrupting effects and strong volatility, which can be transported to remote areas through the atmosphere. This article measured the content of four types of SMs in sediments, soil, and penguin feces at the Great Wall Station in Antarctica and analyzed their ecological risks. Galaxolide (HHCB) and Tonalide (AHTN) are the main SMs in the sample, while Musk xylene (MX) and Musk ketone (MK) were not detected in the sample. HHCB was detected in 87.50% of the samples, with a content of ND—18.35 ng·g−1 dw (dry weight) and an average value of 4.56 ng·g−1 dw; AHTN was detected in 81.25% of the samples, with a content of ND—21.47 ng·g−1 dw and an average value of 6.41 ng·g−1 dw. The highest content of SMs is found in the fecal samples from the top of Penguin Island, indicating that SMs may be enriched in organisms through the food chain and excreted through excreta. The sewage outlet at the Great Wall Station in Antarctica and the waste treatment plant at the Russian Station also contain high levels of SMs, which may be due to pollution caused by human activities. Studies have shown that AHTN is more easily transported over long distances through the atmosphere than HHCB. In this study, analyzing the content ratio of HHCB and AHTN, it was found that the AHTN content in most samples was higher than that of HHCB, indicating that atmospheric deposition is the main source of SMs in the Antarctic region. The HHCB content at the sewage outlet of the Great Wall Station and the Russian garbage treatment plant is higher than that of AHTN, further indicating that the SMs at these two locations mainly come from the activities of scientific researchers. Risk assessment was conducted on sediments, and the risk entropy values of the two detected SMs were both less than 0.1, indicating that theoretically, these two pollutants will not have a significant impact on the Antarctic ecological environment.
-
Key words:
- Synthetic musks (SMs) /
- Antarctica /
- atmospheric transportation /
- risk assessment.
-
-
表 1 人工合成麝香的采集离子信息、方法检测限、方法定量限和回收率
Table 1. Selected ions, MDLs, MQLs and recovery test results of SMs
化合物
Compounds定量离子
Quantitative ion定性离子
Qualitative ions方法检测限/
(ng·g−1)
MDLs方法定量限/
(ng·g−1)
MQLs回收率±标准偏差/%
Recovery±SD5 ng·g−1 10 ng·g−1 100 ng·g−1 HHCB 243 213 258 0.25 0.80 92.70±5.60 96.40±3.70 96.20±3.50 AHTN 243 258 159 0.31 0.95 93.30±3.80 96.20±5.30 95.60±5.50 MX 282 283 297 0.42 1.45 92.40±5.50 95.50±5.50 93.20±7.20 MK 279 294 128 0.85 2.51 109.00±2.00 94.90±6.70 94.20±6.10 荧蒽-d10 212 — — — — — — 13C6-六氯苯 290 — — — — — — 表 2 南极土壤和沉积物中SMs的含量
Table 2. Concentration of SMs for soil and sediment in Antarctica area
采样点
Sampling site样品类型
Sample typeHHCB/(ng·g−1 dw) AHTN/(ng·g−1 dw) ƩSMs/(ng·g−1 dw) CHHCB/CAHTN* F1(长城站,污水口附近) 土壤 12.28 6.32 18.60 1.94 F2(俄国站,垃圾旁) 土壤 18.35 ND* 18.35 /(极大) F4(黄金湾,植被下) 土壤 ND ND ND — F5(碧玉滩,沙滩沙土) 土壤 7.89 12.24 20.14 0.64 F6(企鹅岛,月牙湾) 土壤 3.80 9.52 13.32 0.40 F8(北方台地、月亮湖山地) 土壤 2.57 3.71 6.29 0.69 F9(乌拉圭站) 土壤 1.34 3.90 5.25 0.34 F12(横断风谷) 土壤 2.00 6.63 8.63 0.30 F13(企鹅岛南边小湾旁) 土壤 1.76 4.02 5.78 0.44 F14(油库) 土壤 ND ND ND — F15(科林斯冰盖下) 土壤 1.78 4.42 6.20 0.40 F16(企鹅岛山顶) 粪土 6.52 21.47 27.99 0.30 F3(银镜湖) 沉积物 3.72 8.93 12.65 0.42 F7(霍拉修湾) 沉积物 4.14 8.08 12.23 0.51 F10(幸福湾) 沉积物 2.12 3.42 5.54 0.62 F11(长湖) 沉积物 4.69 9.88 14.57 0.47 *注:ND,未检出. Note: ND, not detected. *CHHCB/CAHTN:HHCB与AHTN的含量比值. The ratio of HHCB to AHTN content 表 3 南极SMs浓度与其他地区浓度对比
Table 3. Comparison of concentration of SMs in Antarctica with that in other regions
研究区域
Study area样品类型
Sample typeHHCB/(ng·g−1 dw) AHTN/(ng·g−1 dw) 参考文献
Reference本研究 土壤和沉积物 ND—18.35(平均:4.33;中值:2.33) ND—21.47(平均:6.28;中值:6.04) 本研究 北戴河湿地 沉积物 19.5—34.9 16.37—29.29 [28] 海河 沉积物 1.5—32.3 2.0—21.9 [25] 黄浦江 沉积物 ND—61.7 (平均:4.32 ) ND—2.78 (平均:0.339) [29] 松花江 沉积物 <0.5—17.5 <0.5—5.7 [30] 苏州溪 沉积物 3.0—78.0 2.0—31.0 [31] 巢湖 沉积物 <1.66—3.93(中值:1.28) 1.27—2.46(中值:1.32) [32] 韩国海岸 沉积物 ND—2.7 ND—1.0 [33] 东北三省 土壤 0.950—7.22(平均:2.61) 1.23—4.97(平均:2.29) [16] 长江三角洲 土壤 0.96—16.98 ND—14.13 [34] 波尔图沙滩 沙土 ND—26.93 ND—3.2 [35] 美国纽约哈德逊河 沉积物 72.8—388 113—544 [36] 胶州湾 沉积物 1.84—4.35 ND—10.9 [37] 沱江 沉积物 0.736—25.0 0.320—24.4 [38] 注:ND,未检出. Note: ND, not detected. 表 4 本研究使用的HHCB和AHTN在沉积物和土壤中生物的毒性数据
Table 4. Toxicity data of HHCB and AHTN to aquatic organisms in sediment and soil used in this study
麝香
Musk生物
Population种类
SpeciesEndpoint 评估因子AF 毒性数据/(ng·g−1)
Toxicity values参考文献
Reference沉积物 HHCB 端足类 Hyalella azteca NOEC 10 7100 [51] HHCB 蠕虫 Lumbriculus variegatus NOEC 10 16200 [51] HHCB 蚊幼虫 Chironomus riparius NOEC 10 200000 [51] AHTN 端足类 Hyalella azteca NOEC 10 18200 [51] AHTN 蠕虫 Lumbriculus variegatus NOEC 10 7100 [52] AHTN 蚊幼虫 Chironomus riparius NOEC 10 101000 [52] 土壤 HHCB 蚯蚓 Eisenia foetida NOEC 50 105000 [51] HHCB 跳蚤 Folsomia candida NOEC 50 45000 [51] AHTN 蚯蚓 Eisenia foetida NOEC 50 250000 [52] AHTN 跳蚤 Folsomia candida NOEC 50 45000 [52] -
[1] PECK A M, HORNBUCKLE K C. Synthetic musk fragrances in Lake Michigan[J]. Environmental Science & Technology, 2004, 38(2): 367-372. [2] LI A J, FELDMAN S M, McNALLY R K, et al. Distribution of organohalogen and synthetic musk compounds in breast adipose tissue of breast cancer patients in ulster county, New York, USA[J]. Archives of Environmental Contamination and Toxicology, 2019, 77(1): 68-78. doi: 10.1007/s00244-019-00621-0 [3] DAVID O R P. Artificial nitromusks, stories of chemists and businessmen[J]. European Journal of Organic Chemistry, 2017(1): 4-13. [4] BALCI E, GENISOGLU M, SOFUOGLU S C, et al. Indoor air partitioning of Synthetic Musk Compounds: Gas, particulate matter, house dust, and window film[J]. The Science of the Total Environment, 2020, 729: 138798. doi: 10.1016/j.scitotenv.2020.138798 [5] FAN M, LIU Z T, DYER S, et al. Environmental risk assessment of polycyclic musks HHCB and AHTN in consumer product chemicals in China[J]. The Science of the Total Environment, 2017, 599/600: 771-779. doi: 10.1016/j.scitotenv.2017.05.036 [6] ARTOLA-GARICANO E, BORKENT I, DAMEN K, et al. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations[J]. Environmental Science & Technology, 2003, 37(1): 116-122. [7] LUO N, GAO Y, CHEN X, et al. A critical review of environmental exposure, metabolic transformation, and the human health risks of synthetic musks[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(24): 2132-2149. doi: 10.1080/10643389.2023.2217068 [8] MARCHAL M, BELTRAN J. Determination of synthetic musk fragrances[J]. International Journal of Environmental Analytical Chemistry, 2016, 96(13): 1213-1246. doi: 10.1080/03067319.2016.1249479 [9] PINKAS A, GONÇALVES C L, ASCHNER M. Neurotoxicity of fragrance compounds: a review[J]. Environmental Research, 2017, 158: 342-349. doi: 10.1016/j.envres.2017.06.035 [10] VALLECILLOS L, BORRULL F, POCURULL E. Recent approaches for the determination of synthetic musk fragrances in environmental samples[J]. Trends in Analytical Chemistry, 2015, 72: 80-92. doi: 10.1016/j.trac.2015.03.022 [11] HONG J H, LEE J Y, HA H J, et al. Occurrence and sources of synthetic musk fragrances in the sewage treatment plants and the Han river, Korea[J]. Water, 2021, 13(4): 392. doi: 10.3390/w13040392 [12] REINER J L, WONG C M, ARCARO K F, et al. Synthetic musk fragrances in human milk from the United States[J]. Environmental Science & Technology, 2007, 41(11): 3815-3820. [13] McDONOUGH C A, HELM P A, MUIR D, et al. Polycyclic musks in the air and water of the lower great lakes: Spatial distribution and volatilization from surface waters[J]. Environmental Science & Technology, 2016, 50(21): 11575-11583. [14] NAKATA H. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters[J]. Environmental Science & Technology, 2005, 39(10): 3430-3434. [15] PECK A M, LINEBAUGH E K, HORNBUCKLE K C. Synthetic musk fragrances in Lake Erie and Lake Ontario sediment cores[J]. Environmental Science & Technology, 2006, 40(18): 5629-5635. [16] ZHENG M G, HU S Y, LIU X W, et al. Levels and distribution of synthetic musks in farmland soils from the Three Northeast Provinces of China[J]. Ecotoxicology and Environmental Safety, 2019, 172: 303-307. doi: 10.1016/j.ecoenv.2019.01.100 [17] NAKATA H, SASAKI H, TAKEMURA A, et al. Bioaccumulation, temporal trend, and geographical distribution of synthetic musks in the marine environment[J]. Environmental Science & Technology, 2007, 41(7): 2216-2222. [18] BHARDWAJ L, SHARMA S, RANJAN A, et al. Persistent organic pollutants in lakes of Broknes peninsula at Larsemann Hills area, East Antarctica[J]. Ecotoxicology, 2019, 28(5): 589-596. doi: 10.1007/s10646-019-02045-x [19] SHAN G Q, XIANG Q, FENG X M, et al. Occurrence and sources of per- and polyfluoroalkyl substances in the ice-melting lakes of Larsemann Hills, East Antarctica[J]. The Science of the Total Environment, 2021, 781: 146747. doi: 10.1016/j.scitotenv.2021.146747 [20] XIONG S Y, HAO Y F, LI Y M, et al. Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica[J]. The Science of the Total Environment, 2021, 756: 144088. doi: 10.1016/j.scitotenv.2020.144088 [21] DEELAMAN W, PONGPIACHAN S, TIPMANEE D, et al. Source apportionment of polycyclic aromatic hydrocarbons in the terrestrial soils of King George Island, Antarctica[J]. Journal of South American Earth Sciences, 2020, 104: 102832. doi: 10.1016/j.jsames.2020.102832 [22] SZOPIŃSKA M, NAMIEŚNIK J, POLKOWSKA Ż. How important is research on pollution levels in Antarctica? historical approach, difficulties and current trends[J]. Reviews of Environmental Contamination and Toxicology, 2017, 239: 79-156. [23] KO F C, PAN W L, CHENG J O, et al. Persistent organic pollutants in Antarctic notothenioid fish and invertebrates associated with trophic levels[J]. PLoS One, 2018, 13(4): e0194147. doi: 10.1371/journal.pone.0194147 [24] 李莹莹, 马玉欣, 朱国平. 南极海洋生物持久性有机污染物: 水平、传递与风险评价[J]. 应用生态学报, 2021, 32(2): 750-762. LI Y Y, MA Y X, ZHU G P. Persistent organic pollution in Antarctic marine biota: Level, transport and risk assessment[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 750-762 (in Chinese).
[25] HU Z J, SHI Y L, CAI Y Q. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China[J]. Chemosphere, 2011, 84(11): 1630-1635. doi: 10.1016/j.chemosphere.2011.05.013 [26] HUANG W X, XIE Z Y, YAN W, et al. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River Estuary of China[J]. Marine Pollution Bulletin, 2016, 111(1/2): 153-159. [27] DOMÍNGUEZ-MORUECO N, CARVALHO M, SIERRA J, et al. Multi-component determination of atmospheric semi-volatile organic compounds in soils and vegetation from Tarragona County, Catalonia, Spain[J]. The Science of the Total Environment, 2018, 631/632: 1138-1152. doi: 10.1016/j.scitotenv.2018.03.074 [28] 董小锋, 楼迎华, 刘晓文, 等. 北戴河湿地沉积物中人工合成麝香分布特征与环境风险评估[J]. 环境化学, 2019, 38(3): 662-668. doi: 10.7524/j.issn.0254-6108.2018050901 DONG X F, LOU Y H, LIU X W, et al. Distribution and environmental risk assessment of Synthetic musks in sediments from Beidai River wetland[J]. Environmental Chemistry, 2019, 38(3): 662-668 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018050901
[29] WANG X T, HU B P, CHENG H X, et al. Spatial variations, source apportionment and potential ecological risks of polycyclic aromatic hydrocarbons and synthetic musks in river sediments in Shanghai, China[J]. Chemosphere, 2018, 193: 108-117. doi: 10.1016/j.chemosphere.2017.10.145 [30] LU B Y, FENG Y J, GAO P, et al. Distribution and fate of synthetic musks in the Songhua River, Northeastern China: Influence of environmental variables[J]. Environmental Science and Pollution Research, 2015, 22(12): 9090-9099. doi: 10.1007/s11356-014-3973-6 [31] ZHANG X L, YAO Y, ZENG X Y, et al. Synthetic musks in the aquatic environment and personal care products in Shanghai, China[J]. Chemosphere, 2008, 72(10): 1553-1558. doi: 10.1016/j.chemosphere.2008.04.039 [32] LYU Y, REN S, ZHONG F Y, et al. Synthetic musk fragrances in sediments from a subtropical river-lake system in Eastern China: Occurrences, profiles, and ecological risks[J]. Environmental Science and Pollution Research, 2021, 28(12): 14597-14606. doi: 10.1007/s11356-020-11486-5 [33] LEE I S, KIM U J, OH J E, et al. Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: With consideration of ecological concerns and bioaccumulation[J]. The Science of the Total Environment, 2014, 470/471: 1502-1508. doi: 10.1016/j.scitotenv.2013.07.070 [34] 喻月, 王玲, 赵全升, 等. 气相色谱-质谱联用测定长江三角洲农田土壤中的合成麝香[J]. 环境化学, 2015, 34(11): 2046-2052. doi: 10.7524/j.issn.0254-6108.2015.11.2015042804 YU Y, WANG L, ZHAO Q S, et al. Determination of synthetic musks in farmland soil from Yangtze River Delta by gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2015, 34(11): 2046-2052 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015042804
[35] HOMEM V, MAGALHÃES I, ALVES A, et al. Assessing seasonal variation of synthetic musks in beach sands from Oporto coastal area: A case study[J]. Environmental Pollution, 2017, 226: 190-197. doi: 10.1016/j.envpol.2017.04.022 [36] REINER J L, KANNAN K. Polycyclic musks in water, sediment, and fishes from the upper Hudson River, New York, USA[J]. Water, Air, & Soil Pollution, 2011, 214(1): 335-342. [37] 王杰, 楼迎华, 王玲, 等. 胶州湾北岸潮间带沉积物中人工合成麝香的污染特征[J]. 环境化学, 2015, 34(2): 384-385. doi: 10.7524/j.issn.0254-6108.2015.02.2014092203 WANG J, LOU Y H, WANG L, et al. Pollution characteristics of synthetic musk in intertidal sediments on the north shore of Jiaozhou Bay[J]. Environmental Chemistry, 2015, 34(2): 384-385 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.02.2014092203
[38] 刘艺, 徐亮, 胡琼璞, 等. 沱江流域沉积物中合成麝香的分布特征及其潜在生态风险评估[J]. 环境化学, 2022, 41(6): 1967-1975. doi: 10.7524/j.issn.0254-6108.2021020401 LIU Y, XU L, HU Q P, et al. Occurrence and distribution of synthetic musks in sediments from Tuojiang and their potential ecological risk[J]. Environmental Chemistry, 2022, 41(6): 1967-1975 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021020401
[39] 刘志红. 合成麝香与生态风险[J]. 化学教育, 2010, 31(12): 1-3,6. doi: 10.3969/j.issn.1003-3807.2010.12.001 LIU Z H. Synthetic musk and ecological risk[J]. Chinese Journal of Chemical Education, 2010, 31(12): 1-3,6 (in Chinese). doi: 10.3969/j.issn.1003-3807.2010.12.001
[40] GATERMANN R, BISELLI S, HÜHNERFUSS H, et al. Synthetic musks in the environment. part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(4): 437-446. doi: 10.1007/s00244-001-0041-2 [41] 姚理, 窦文渊, 马艳芳, 等. 24种个人护理品在鱼血浆中的富集特征及风险[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 51-60. YAO L, DOU W Y, MA Y F, et al. Bioaccumulation of personal care products in the plasma of wild fish from the Dongjiang River and the associated risks[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 51-60 (in Chinese).
[42] LV Y, YUAN T, HU J Y, et al. Seasonal occurrence and behavior of synthetic musks (SMs) during wastewater treatment process in Shanghai, China[J]. The Science of the Total Environment, 2010, 408(19): 4170-4176. doi: 10.1016/j.scitotenv.2010.05.003 [43] HOMEM V, SILVA J A, RATOLA N, et al. Long lasting perfume: A review of synthetic musks in WWTPs[J]. Journal of Environmental Management, 2015, 149: 168-192. [44] XIE Z Y, EBINGHAUS R, TEMME C, et al. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic[J]. Environmental Science & Technology, 2007, 41(16): 5654-5659. [45] KOŠNÁŘ Z, MERCL F, CHANE A D, et al. Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants[J]. The Science of the Total Environment, 2021, 801: 149777. doi: 10.1016/j.scitotenv.2021.149777 [46] TSENG W J, TSAI S W. Assessment of dermal exposures for synthetic musks from personal care products in Taiwan[J]. The Science of the Total Environment, 2019, 669: 160-167. doi: 10.1016/j.scitotenv.2019.03.046 [47] WANG Q, KELLY B C. Occurrence and distribution of synthetic musks, triclosan and methyl triclosan in a tropical urban catchment: Influence of land-use proximity, rainfall and physicochemical properties[J]. The Science of the Total Environment, 2017, 574: 1439-1447. doi: 10.1016/j.scitotenv.2016.08.091 [48] LYU Y, REN S, ZHONG F Y, et al. Occurrence and trophic transfer of synthetic musks in the freshwater food web of a large subtropical lake[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112074. doi: 10.1016/j.ecoenv.2021.112074 [49] European Chemicals Bureau. Technical Guidance Document on Risk Assessment-Part II[M]. Italy: Institute for health and consumer protection, 2003. [50] 华艺. 人工合成麝香在中国黄海、东海干湿季节和南极长城站的分布特征及界面行为[D]. 青岛: 青岛大学, 2022. HUA Y. Distribution characteristics and interface behavior of synthetic musk in dry and wet seasons in the Yellow Sea, East China Sea and Antarctic great wall station[D]. Qingdao: Qingdao University, 2022 (in Chinese).
[51] European Chemicals Bureau. Risk assessment report on 1,3,4,6,7,8-hexahydro-4,6,6,7,8,,8-hexamethylcyclo-penta-g-2-benzopyranehhcb (cas no: 1222-05-5)[M]. OPOCE, 2008b. [52] European Chemicals Bureau. Risk Assessment Report on 1-(5, 6, 7, 8-tetrahydro-3, 5, 5, 6, 8, 8-hexamethyl-2-napthyl)ethan-1-oneeahtn (cas no: 1506-02-1)[M]. OPOCE, 2008a. -