-
作为环境中一类重要的污染物,人工合成麝香(Synthetic musks,SMs)越来越受到研究人员和公众的关注. 与天然麝香相比,SMs价格低廉,易于获取,被广泛用于家庭和个人护理产品,例如香水、洗衣液、化妆品、香皂等[1]. SMs是一类半挥发性有机化合物,具有高的辛醇-水分配系数(lgKow值高于5),并且其化学亲脂性使其易于从水相中吸附到固相沉积物或土壤中,随后通过生物累积富集到生物体中[2]. SMs可分为三大类:硝基麝香(nitro musk)、多环麝香(polycyclic musk)和大环麝香(macrocyclic musk). 大多数硝基麝香,包括二甲苯麝香(musk xylene,MX)和酮麝香(musk ketone,MK),由于对健康和环境潜在的负面影响,于20世纪末已在几个国家被禁止使用[3- 4],但由于其致癌性、持久性和生物累积性,硝基麝香仍然是SMs的一个重要群体,并继续成为热点主题. 多环麝香于20世纪60年代首次开发,很快成为硝基麝香的替代品. 最常见的两种多环麝香是吐纳麝香(tonalide,AHTN)和佳乐麝香(galaxolide,HHCB)[5],约占多环麝香市场的95%,并且其结构稳定,不易降解[6]. 在中国,个人护理产品中的HHCB和AHTN分别占到73%和65%[7]. 大环麝香的合成成本高,不如多环麝香普遍,其用途仅限于香水行业,因此只占据人工合成麝香市场的3%—4%[8]. 与硝基麝香和多环麝香相比,大环麝香的生态毒性和神经毒性研究才刚刚开始,尚未得到系统的结论[9 − 10]. 由于SMs主要用于日用品,90%以上家庭使用的SMs会进入市政污水处理厂,最终迁移到环境中[11]. 目前已经在沉积物、水体、土壤和空气等多种环境介质中检测到SMs,同时也在人体、鱼类等生物样品中检出[12 − 15]. 虽然由于其生物积累性、亲脂性、持久性和高赋存水平,已受到广泛关注[16 − 17],但对南极地区的SMs却很少报道.
南极曾被认为是地球上的净土,但近年来相关研究表明,在南极洲的土壤中发现了多种有机污染物[18 − 21]. 这些有机污染物,多数是持久性有机污染物,如有机氯农药、六氯环己烷多氯联苯和多溴联苯醚,其来源主要是远距离大气输送(LRAT)或附近区域的人为活动[22]. 持久性有机污染物具有亲脂性,易在生物体中富集,Ko等[23]从南极采集了鱼类和无脊椎动物样本,并分析了持久性有机污染物,包括多环芳烃、有机氯农药和多溴二苯醚,发现南极生物群样本中的POPs水平有机氯农药最高,多环芳烃次之,多溴二苯醚最低. 持久性有机污染物的生物放大作用可能比南极环境中的生物浓缩作用小. 除了南极洲短食物链中每组持久性有机污染物的来源、运输、暴露和吸收外,物种之间的生物变异、相互作用的栖息地、饮食和代谢也是未来污染物生物累积研究的因素. 此外,全球气候变化也会影响污染物的迁移与分布,南极洲被视为持久性有机污染物的冷阱,这些污染物在热带或温带地区跟随大气交换进入到空气中进行远距离传输,而到达南极地区时,由于温度低而发生沉降,这使得持久性有机污染物对南极生态环境产生的潜在风险逐渐升级[24].
本研究在南极长城站采集土壤、沉积物和企鹅粪便样品,共16个,分析了4种SMs的分布及污染情况,进行污染来源分析,并与近年来其他区域SMs的含量进行了比较;另外,运用风险熵对其潜在的生态风险进行评价,本研究结果将对极地地区SMs的污染水平、分布特征、环境风险提供数据支持.
南极长城站周边土壤、潮间带沉积物和企鹅粪土沉积层中人工合成麝香的分布及生态风险
Distribution and ecological risk of synthetic musks in Antarctica sediments and soils
-
摘要: 人工合成麝香(Synthetic musks,SMs)具有内分泌干扰效应并且其挥发性强,能够通过大气传输到达偏远地区. 本文测定了中国南极长城站沉积物、土壤和企鹅粪便中四种SMs的含量,并分析了其生态风险. 佳乐麝香(Galaxolide,HHCB)和吐纳麝香(Tonalide,AHTN)是样品中的主要SMs,二甲苯麝香(Musk xylene,MX)和酮麝香(Musk ketone,MK)未在样品中检出. 有87.50%的样品检出HHCB,含量为ND—18.35 ng·g−1 dw(干重),平均值为4.56 ng·g−1 dw;有81.25%的样品中检出AHTN,含量为ND—21.47 ng·g−1 dw,平均值为6.41 ng·g−1 dw. 企鹅岛山顶的粪土样品中SMs含量最高,说明SMs可能通过食物链在生物体内富集,并通过排泄物排出. 南极长城站污水口和俄国站垃圾处理厂的两个点位也含有较高含量的SMs,分析其原因可能是由于人类的活动引入的SMs的污染. 有研究表明AHTN比HHCB更容易通过大气进行远距离传输,而在本研究中,分析HHCB和AHTN的含量比发现,大部分样品中AHTN含量都高于HHCB,说明大气沉降是南极地区SMs的主要来源. 而长城站污水口和俄国垃圾处理厂两个点位HHCB的含量高于AHTN,进一步说明这两个点位SMs主要来源于科考人员的活动. 对沉积物进行风险评估,检出的两种SMs的风险熵值均小于0.1,表明从理论上来说这两种污染物不会对南极生态环境造成显著影响.Abstract: Synthetic musks (SMs) have endocrine disrupting effects and strong volatility, which can be transported to remote areas through the atmosphere. This article measured the content of four types of SMs in sediments, soil, and penguin feces at the Great Wall Station in Antarctica and analyzed their ecological risks. Galaxolide (HHCB) and Tonalide (AHTN) are the main SMs in the sample, while Musk xylene (MX) and Musk ketone (MK) were not detected in the sample. HHCB was detected in 87.50% of the samples, with a content of ND—18.35 ng·g−1 dw (dry weight) and an average value of 4.56 ng·g−1 dw; AHTN was detected in 81.25% of the samples, with a content of ND—21.47 ng·g−1 dw and an average value of 6.41 ng·g−1 dw. The highest content of SMs is found in the fecal samples from the top of Penguin Island, indicating that SMs may be enriched in organisms through the food chain and excreted through excreta. The sewage outlet at the Great Wall Station in Antarctica and the waste treatment plant at the Russian Station also contain high levels of SMs, which may be due to pollution caused by human activities. Studies have shown that AHTN is more easily transported over long distances through the atmosphere than HHCB. In this study, analyzing the content ratio of HHCB and AHTN, it was found that the AHTN content in most samples was higher than that of HHCB, indicating that atmospheric deposition is the main source of SMs in the Antarctic region. The HHCB content at the sewage outlet of the Great Wall Station and the Russian garbage treatment plant is higher than that of AHTN, further indicating that the SMs at these two locations mainly come from the activities of scientific researchers. Risk assessment was conducted on sediments, and the risk entropy values of the two detected SMs were both less than 0.1, indicating that theoretically, these two pollutants will not have a significant impact on the Antarctic ecological environment.
-
Key words:
- Synthetic musks (SMs) /
- Antarctica /
- atmospheric transportation /
- risk assessment.
-
表 1 人工合成麝香的采集离子信息、方法检测限、方法定量限和回收率
Table 1. Selected ions, MDLs, MQLs and recovery test results of SMs
化合物
Compounds定量离子
Quantitative ion定性离子
Qualitative ions方法检测限/
(ng·g−1)
MDLs方法定量限/
(ng·g−1)
MQLs回收率±标准偏差/%
Recovery±SD5 ng·g−1 10 ng·g−1 100 ng·g−1 HHCB 243 213 258 0.25 0.80 92.70±5.60 96.40±3.70 96.20±3.50 AHTN 243 258 159 0.31 0.95 93.30±3.80 96.20±5.30 95.60±5.50 MX 282 283 297 0.42 1.45 92.40±5.50 95.50±5.50 93.20±7.20 MK 279 294 128 0.85 2.51 109.00±2.00 94.90±6.70 94.20±6.10 荧蒽-d10 212 — — — — — — 13C6-六氯苯 290 — — — — — — 表 2 南极土壤和沉积物中SMs的含量
Table 2. Concentration of SMs for soil and sediment in Antarctica area
采样点
Sampling site样品类型
Sample typeHHCB/(ng·g−1 dw) AHTN/(ng·g−1 dw) ƩSMs/(ng·g−1 dw) CHHCB/CAHTN* F1(长城站,污水口附近) 土壤 12.28 6.32 18.60 1.94 F2(俄国站,垃圾旁) 土壤 18.35 ND* 18.35 /(极大) F4(黄金湾,植被下) 土壤 ND ND ND — F5(碧玉滩,沙滩沙土) 土壤 7.89 12.24 20.14 0.64 F6(企鹅岛,月牙湾) 土壤 3.80 9.52 13.32 0.40 F8(北方台地、月亮湖山地) 土壤 2.57 3.71 6.29 0.69 F9(乌拉圭站) 土壤 1.34 3.90 5.25 0.34 F12(横断风谷) 土壤 2.00 6.63 8.63 0.30 F13(企鹅岛南边小湾旁) 土壤 1.76 4.02 5.78 0.44 F14(油库) 土壤 ND ND ND — F15(科林斯冰盖下) 土壤 1.78 4.42 6.20 0.40 F16(企鹅岛山顶) 粪土 6.52 21.47 27.99 0.30 F3(银镜湖) 沉积物 3.72 8.93 12.65 0.42 F7(霍拉修湾) 沉积物 4.14 8.08 12.23 0.51 F10(幸福湾) 沉积物 2.12 3.42 5.54 0.62 F11(长湖) 沉积物 4.69 9.88 14.57 0.47 *注:ND,未检出. Note: ND, not detected. *CHHCB/CAHTN:HHCB与AHTN的含量比值. The ratio of HHCB to AHTN content 表 3 南极SMs浓度与其他地区浓度对比
Table 3. Comparison of concentration of SMs in Antarctica with that in other regions
研究区域
Study area样品类型
Sample typeHHCB/(ng·g−1 dw) AHTN/(ng·g−1 dw) 参考文献
Reference本研究 土壤和沉积物 ND—18.35(平均:4.33;中值:2.33) ND—21.47(平均:6.28;中值:6.04) 本研究 北戴河湿地 沉积物 19.5—34.9 16.37—29.29 [28] 海河 沉积物 1.5—32.3 2.0—21.9 [25] 黄浦江 沉积物 ND—61.7 (平均:4.32 ) ND—2.78 (平均:0.339) [29] 松花江 沉积物 <0.5—17.5 <0.5—5.7 [30] 苏州溪 沉积物 3.0—78.0 2.0—31.0 [31] 巢湖 沉积物 <1.66—3.93(中值:1.28) 1.27—2.46(中值:1.32) [32] 韩国海岸 沉积物 ND—2.7 ND—1.0 [33] 东北三省 土壤 0.950—7.22(平均:2.61) 1.23—4.97(平均:2.29) [16] 长江三角洲 土壤 0.96—16.98 ND—14.13 [34] 波尔图沙滩 沙土 ND—26.93 ND—3.2 [35] 美国纽约哈德逊河 沉积物 72.8—388 113—544 [36] 胶州湾 沉积物 1.84—4.35 ND—10.9 [37] 沱江 沉积物 0.736—25.0 0.320—24.4 [38] 注:ND,未检出. Note: ND, not detected. 表 4 本研究使用的HHCB和AHTN在沉积物和土壤中生物的毒性数据
Table 4. Toxicity data of HHCB and AHTN to aquatic organisms in sediment and soil used in this study
麝香
Musk生物
Population种类
SpeciesEndpoint 评估因子AF 毒性数据/(ng·g−1)
Toxicity values参考文献
Reference沉积物 HHCB 端足类 Hyalella azteca NOEC 10 7100 [51] HHCB 蠕虫 Lumbriculus variegatus NOEC 10 16200 [51] HHCB 蚊幼虫 Chironomus riparius NOEC 10 200000 [51] AHTN 端足类 Hyalella azteca NOEC 10 18200 [51] AHTN 蠕虫 Lumbriculus variegatus NOEC 10 7100 [52] AHTN 蚊幼虫 Chironomus riparius NOEC 10 101000 [52] 土壤 HHCB 蚯蚓 Eisenia foetida NOEC 50 105000 [51] HHCB 跳蚤 Folsomia candida NOEC 50 45000 [51] AHTN 蚯蚓 Eisenia foetida NOEC 50 250000 [52] AHTN 跳蚤 Folsomia candida NOEC 50 45000 [52] -
[1] PECK A M, HORNBUCKLE K C. Synthetic musk fragrances in Lake Michigan[J]. Environmental Science & Technology, 2004, 38(2): 367-372. [2] LI A J, FELDMAN S M, McNALLY R K, et al. Distribution of organohalogen and synthetic musk compounds in breast adipose tissue of breast cancer patients in ulster county, New York, USA[J]. Archives of Environmental Contamination and Toxicology, 2019, 77(1): 68-78. doi: 10.1007/s00244-019-00621-0 [3] DAVID O R P. Artificial nitromusks, stories of chemists and businessmen[J]. European Journal of Organic Chemistry, 2017(1): 4-13. [4] BALCI E, GENISOGLU M, SOFUOGLU S C, et al. Indoor air partitioning of Synthetic Musk Compounds: Gas, particulate matter, house dust, and window film[J]. The Science of the Total Environment, 2020, 729: 138798. doi: 10.1016/j.scitotenv.2020.138798 [5] FAN M, LIU Z T, DYER S, et al. Environmental risk assessment of polycyclic musks HHCB and AHTN in consumer product chemicals in China[J]. The Science of the Total Environment, 2017, 599/600: 771-779. doi: 10.1016/j.scitotenv.2017.05.036 [6] ARTOLA-GARICANO E, BORKENT I, DAMEN K, et al. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations[J]. Environmental Science & Technology, 2003, 37(1): 116-122. [7] LUO N, GAO Y, CHEN X, et al. A critical review of environmental exposure, metabolic transformation, and the human health risks of synthetic musks[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(24): 2132-2149. doi: 10.1080/10643389.2023.2217068 [8] MARCHAL M, BELTRAN J. Determination of synthetic musk fragrances[J]. International Journal of Environmental Analytical Chemistry, 2016, 96(13): 1213-1246. doi: 10.1080/03067319.2016.1249479 [9] PINKAS A, GONÇALVES C L, ASCHNER M. Neurotoxicity of fragrance compounds: a review[J]. Environmental Research, 2017, 158: 342-349. doi: 10.1016/j.envres.2017.06.035 [10] VALLECILLOS L, BORRULL F, POCURULL E. Recent approaches for the determination of synthetic musk fragrances in environmental samples[J]. Trends in Analytical Chemistry, 2015, 72: 80-92. doi: 10.1016/j.trac.2015.03.022 [11] HONG J H, LEE J Y, HA H J, et al. Occurrence and sources of synthetic musk fragrances in the sewage treatment plants and the Han river, Korea[J]. Water, 2021, 13(4): 392. doi: 10.3390/w13040392 [12] REINER J L, WONG C M, ARCARO K F, et al. Synthetic musk fragrances in human milk from the United States[J]. Environmental Science & Technology, 2007, 41(11): 3815-3820. [13] McDONOUGH C A, HELM P A, MUIR D, et al. Polycyclic musks in the air and water of the lower great lakes: Spatial distribution and volatilization from surface waters[J]. Environmental Science & Technology, 2016, 50(21): 11575-11583. [14] NAKATA H. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters[J]. Environmental Science & Technology, 2005, 39(10): 3430-3434. [15] PECK A M, LINEBAUGH E K, HORNBUCKLE K C. Synthetic musk fragrances in Lake Erie and Lake Ontario sediment cores[J]. Environmental Science & Technology, 2006, 40(18): 5629-5635. [16] ZHENG M G, HU S Y, LIU X W, et al. Levels and distribution of synthetic musks in farmland soils from the Three Northeast Provinces of China[J]. Ecotoxicology and Environmental Safety, 2019, 172: 303-307. doi: 10.1016/j.ecoenv.2019.01.100 [17] NAKATA H, SASAKI H, TAKEMURA A, et al. Bioaccumulation, temporal trend, and geographical distribution of synthetic musks in the marine environment[J]. Environmental Science & Technology, 2007, 41(7): 2216-2222. [18] BHARDWAJ L, SHARMA S, RANJAN A, et al. Persistent organic pollutants in lakes of Broknes peninsula at Larsemann Hills area, East Antarctica[J]. Ecotoxicology, 2019, 28(5): 589-596. doi: 10.1007/s10646-019-02045-x [19] SHAN G Q, XIANG Q, FENG X M, et al. Occurrence and sources of per- and polyfluoroalkyl substances in the ice-melting lakes of Larsemann Hills, East Antarctica[J]. The Science of the Total Environment, 2021, 781: 146747. doi: 10.1016/j.scitotenv.2021.146747 [20] XIONG S Y, HAO Y F, LI Y M, et al. Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica[J]. The Science of the Total Environment, 2021, 756: 144088. doi: 10.1016/j.scitotenv.2020.144088 [21] DEELAMAN W, PONGPIACHAN S, TIPMANEE D, et al. Source apportionment of polycyclic aromatic hydrocarbons in the terrestrial soils of King George Island, Antarctica[J]. Journal of South American Earth Sciences, 2020, 104: 102832. doi: 10.1016/j.jsames.2020.102832 [22] SZOPIŃSKA M, NAMIEŚNIK J, POLKOWSKA Ż. How important is research on pollution levels in Antarctica? historical approach, difficulties and current trends[J]. Reviews of Environmental Contamination and Toxicology, 2017, 239: 79-156. [23] KO F C, PAN W L, CHENG J O, et al. Persistent organic pollutants in Antarctic notothenioid fish and invertebrates associated with trophic levels[J]. PLoS One, 2018, 13(4): e0194147. doi: 10.1371/journal.pone.0194147 [24] 李莹莹, 马玉欣, 朱国平. 南极海洋生物持久性有机污染物: 水平、传递与风险评价[J]. 应用生态学报, 2021, 32(2): 750-762. LI Y Y, MA Y X, ZHU G P. Persistent organic pollution in Antarctic marine biota: Level, transport and risk assessment[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 750-762 (in Chinese).
[25] HU Z J, SHI Y L, CAI Y Q. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China[J]. Chemosphere, 2011, 84(11): 1630-1635. doi: 10.1016/j.chemosphere.2011.05.013 [26] HUANG W X, XIE Z Y, YAN W, et al. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River Estuary of China[J]. Marine Pollution Bulletin, 2016, 111(1/2): 153-159. [27] DOMÍNGUEZ-MORUECO N, CARVALHO M, SIERRA J, et al. Multi-component determination of atmospheric semi-volatile organic compounds in soils and vegetation from Tarragona County, Catalonia, Spain[J]. The Science of the Total Environment, 2018, 631/632: 1138-1152. doi: 10.1016/j.scitotenv.2018.03.074 [28] 董小锋, 楼迎华, 刘晓文, 等. 北戴河湿地沉积物中人工合成麝香分布特征与环境风险评估[J]. 环境化学, 2019, 38(3): 662-668. doi: 10.7524/j.issn.0254-6108.2018050901 DONG X F, LOU Y H, LIU X W, et al. Distribution and environmental risk assessment of Synthetic musks in sediments from Beidai River wetland[J]. Environmental Chemistry, 2019, 38(3): 662-668 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018050901
[29] WANG X T, HU B P, CHENG H X, et al. Spatial variations, source apportionment and potential ecological risks of polycyclic aromatic hydrocarbons and synthetic musks in river sediments in Shanghai, China[J]. Chemosphere, 2018, 193: 108-117. doi: 10.1016/j.chemosphere.2017.10.145 [30] LU B Y, FENG Y J, GAO P, et al. Distribution and fate of synthetic musks in the Songhua River, Northeastern China: Influence of environmental variables[J]. Environmental Science and Pollution Research, 2015, 22(12): 9090-9099. doi: 10.1007/s11356-014-3973-6 [31] ZHANG X L, YAO Y, ZENG X Y, et al. Synthetic musks in the aquatic environment and personal care products in Shanghai, China[J]. Chemosphere, 2008, 72(10): 1553-1558. doi: 10.1016/j.chemosphere.2008.04.039 [32] LYU Y, REN S, ZHONG F Y, et al. Synthetic musk fragrances in sediments from a subtropical river-lake system in Eastern China: Occurrences, profiles, and ecological risks[J]. Environmental Science and Pollution Research, 2021, 28(12): 14597-14606. doi: 10.1007/s11356-020-11486-5 [33] LEE I S, KIM U J, OH J E, et al. Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: With consideration of ecological concerns and bioaccumulation[J]. The Science of the Total Environment, 2014, 470/471: 1502-1508. doi: 10.1016/j.scitotenv.2013.07.070 [34] 喻月, 王玲, 赵全升, 等. 气相色谱-质谱联用测定长江三角洲农田土壤中的合成麝香[J]. 环境化学, 2015, 34(11): 2046-2052. doi: 10.7524/j.issn.0254-6108.2015.11.2015042804 YU Y, WANG L, ZHAO Q S, et al. Determination of synthetic musks in farmland soil from Yangtze River Delta by gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2015, 34(11): 2046-2052 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015042804
[35] HOMEM V, MAGALHÃES I, ALVES A, et al. Assessing seasonal variation of synthetic musks in beach sands from Oporto coastal area: A case study[J]. Environmental Pollution, 2017, 226: 190-197. doi: 10.1016/j.envpol.2017.04.022 [36] REINER J L, KANNAN K. Polycyclic musks in water, sediment, and fishes from the upper Hudson River, New York, USA[J]. Water, Air, & Soil Pollution, 2011, 214(1): 335-342. [37] 王杰, 楼迎华, 王玲, 等. 胶州湾北岸潮间带沉积物中人工合成麝香的污染特征[J]. 环境化学, 2015, 34(2): 384-385. doi: 10.7524/j.issn.0254-6108.2015.02.2014092203 WANG J, LOU Y H, WANG L, et al. Pollution characteristics of synthetic musk in intertidal sediments on the north shore of Jiaozhou Bay[J]. Environmental Chemistry, 2015, 34(2): 384-385 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.02.2014092203
[38] 刘艺, 徐亮, 胡琼璞, 等. 沱江流域沉积物中合成麝香的分布特征及其潜在生态风险评估[J]. 环境化学, 2022, 41(6): 1967-1975. doi: 10.7524/j.issn.0254-6108.2021020401 LIU Y, XU L, HU Q P, et al. Occurrence and distribution of synthetic musks in sediments from Tuojiang and their potential ecological risk[J]. Environmental Chemistry, 2022, 41(6): 1967-1975 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021020401
[39] 刘志红. 合成麝香与生态风险[J]. 化学教育, 2010, 31(12): 1-3,6. doi: 10.3969/j.issn.1003-3807.2010.12.001 LIU Z H. Synthetic musk and ecological risk[J]. Chinese Journal of Chemical Education, 2010, 31(12): 1-3,6 (in Chinese). doi: 10.3969/j.issn.1003-3807.2010.12.001
[40] GATERMANN R, BISELLI S, HÜHNERFUSS H, et al. Synthetic musks in the environment. part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(4): 437-446. doi: 10.1007/s00244-001-0041-2 [41] 姚理, 窦文渊, 马艳芳, 等. 24种个人护理品在鱼血浆中的富集特征及风险[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 51-60. YAO L, DOU W Y, MA Y F, et al. Bioaccumulation of personal care products in the plasma of wild fish from the Dongjiang River and the associated risks[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 51-60 (in Chinese).
[42] LV Y, YUAN T, HU J Y, et al. Seasonal occurrence and behavior of synthetic musks (SMs) during wastewater treatment process in Shanghai, China[J]. The Science of the Total Environment, 2010, 408(19): 4170-4176. doi: 10.1016/j.scitotenv.2010.05.003 [43] HOMEM V, SILVA J A, RATOLA N, et al. Long lasting perfume: A review of synthetic musks in WWTPs[J]. Journal of Environmental Management, 2015, 149: 168-192. [44] XIE Z Y, EBINGHAUS R, TEMME C, et al. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic[J]. Environmental Science & Technology, 2007, 41(16): 5654-5659. [45] KOŠNÁŘ Z, MERCL F, CHANE A D, et al. Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants[J]. The Science of the Total Environment, 2021, 801: 149777. doi: 10.1016/j.scitotenv.2021.149777 [46] TSENG W J, TSAI S W. Assessment of dermal exposures for synthetic musks from personal care products in Taiwan[J]. The Science of the Total Environment, 2019, 669: 160-167. doi: 10.1016/j.scitotenv.2019.03.046 [47] WANG Q, KELLY B C. Occurrence and distribution of synthetic musks, triclosan and methyl triclosan in a tropical urban catchment: Influence of land-use proximity, rainfall and physicochemical properties[J]. The Science of the Total Environment, 2017, 574: 1439-1447. doi: 10.1016/j.scitotenv.2016.08.091 [48] LYU Y, REN S, ZHONG F Y, et al. Occurrence and trophic transfer of synthetic musks in the freshwater food web of a large subtropical lake[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112074. doi: 10.1016/j.ecoenv.2021.112074 [49] European Chemicals Bureau. Technical Guidance Document on Risk Assessment-Part II[M]. Italy: Institute for health and consumer protection, 2003. [50] 华艺. 人工合成麝香在中国黄海、东海干湿季节和南极长城站的分布特征及界面行为[D]. 青岛: 青岛大学, 2022. HUA Y. Distribution characteristics and interface behavior of synthetic musk in dry and wet seasons in the Yellow Sea, East China Sea and Antarctic great wall station[D]. Qingdao: Qingdao University, 2022 (in Chinese).
[51] European Chemicals Bureau. Risk assessment report on 1,3,4,6,7,8-hexahydro-4,6,6,7,8,,8-hexamethylcyclo-penta-g-2-benzopyranehhcb (cas no: 1222-05-5)[M]. OPOCE, 2008b. [52] European Chemicals Bureau. Risk Assessment Report on 1-(5, 6, 7, 8-tetrahydro-3, 5, 5, 6, 8, 8-hexamethyl-2-napthyl)ethan-1-oneeahtn (cas no: 1506-02-1)[M]. OPOCE, 2008a.