-
对苯二胺类物质(PPDs)是一类合成抗氧化剂,因其卓越的热稳定性、抗降解和抗臭氧诱导开裂能力而被广泛用于多种橡胶产品,如汽车轮胎、胶管、胶带等[1]. 此外,许多其他橡胶相关产品也是其潜在来源,如衣服、娱乐设施、运动器材、电线电缆等[2]. 其中,N-(1,3-二甲基丁基)-N′-苯基-对苯二胺(6PPD)是最常用的轮胎抗氧化剂,在2020年仅中国6PPD年产量就超过20万吨[3],其它PPDs,例如N-异丙基-N′-苯基-1,4-苯二胺(IPPD)、N,N′-二苯基-对苯二胺(DPPD)和N,N′-二甲苯基-对苯二胺(DTPD)的年产量也相当可观[4]. 然而,大规模的生产和消费导致大量的PPDs排放到环境中,可能经氧化转化为相应的醌类衍生物(PPDQs)[5]. 越来越多的证据表明,PPDs及PPDQs广泛存在于城市径流、沉积物、空气颗粒物和室内灰尘中[6 − 7],甚至在包括敏感人群(儿童和孕妇)在内的人体血液、尿液、母乳及脑脊液样本中也有检出[8 − 9].
PPDs及PPDQs对环境和健康的潜在威胁引起了人们的严重担忧[10]. 研究发现,6PPD对水生生物具有物种特异性毒性,当浓度达到10 μg·L−1时,会对斑马鱼仔鱼产生亚致死效应[11],影响斑马鱼胚胎的生长和发育,降低其孵化率、自主运动能力和体长,并导致畸形. DPPD暴露对大鼠表现出生殖发育毒性,可以通过影响怀孕大鼠的前列腺素水平来延长妊娠期并导致难产[12]. 另外,有研究发现,皮肤直接接触橡胶制品(如轮胎、鞋子、橡胶管)中的IPPD和N-苯基-N′-环己基-对苯二胺(CPPD)与人类过敏性接触性皮炎的发生有关[13]. 值得注意的是,环境中PPDQs的浓度与其母体PPDs相当甚至更高[14],对水生生物的毒性可能比其相应的PPDs更强[15]. 例如,幼年银鲑对于6PPDQ的半数致死浓度(95 ng·L−1)比6PPD(250 mg·L−1)低
1000 倍以上[16]. 此外,研究还揭示了6PPDQ对水生生物和哺乳动物的其他毒性作用,包括神经毒性、发育毒性、肝毒性和免疫毒性等[10, 17]. 水生细菌——费希弧菌暴露于PPDs和PPDQs的生物反应实验表明,PPDQs可降低酯酶活性,引起细胞膜损伤和细胞内氧化应激,并通过竞争结合对蛋白质的功能造成潜在影响,一些新PPDQs对水生细菌的毒性明显高于已研究的6PPDQ[15]. 目前,PPDQs对哺乳动物的不良影响尚未得到充分揭示和全面评估. 然而,与其他已知引发氧化应激和DNA损伤的醌类物质相似,这些PPDQs也可能导致类似的结果[18 − 19].考虑到PPDs及PPDQs在全球各种环境介质中的普遍存在,且在不同环境介质中的浓度分布存在显著差异,全面监测这些化合物在环境中的分布情况,了解人体的暴露水平以及探究其潜在的毒理学效应至关重要. 本文综述了PPDs及PPDQs的来源,在环境中的分布情况及浓度水平,并探讨了不同人群通过各种途径对PPDs和PPDQs的暴露水平及其潜在的健康影响,为后续的环境监测、风险评估和管理防控提供科学依据. 主要PPDs以及PPDQs名称信息见表1.
我国对苯二胺类抗氧化剂及其衍生醌类化合物污染现状及健康风险研究进展
A review of contaminations and health risks of p-phenylenediamine antioxidants and their derived novel quinones
-
摘要: 对苯二胺类物质(PPDs)通常被用作橡胶工业中的抗氧化剂,以延长橡胶产品(如轮胎)的使用寿命. PPDs的醌类转化产物(PPDQs)近来被视为一类新兴的污染物,因其对一系列水生生物的急性致死毒性而引起广泛关注. PPDs及PPDQs在环境中普遍存在,并可通过多种暴露途径进入人体而对健康造成潜在威胁. 本文回顾了目前关于PPDs和PPDQs的来源、浓度和分布的报道,比较不同人群通过各种途径的对PPDs和PPDQs的暴露水平及评估其潜在的健康风险. 研究发现,温度、光照、臭氧水平及水文条件等因素影响各环境介质中的PPDs和PPDQs的浓度和分布. 此外,人们也普遍暴露于多种PPDs及PPDQs,且PPDQs的内暴露水平比其母体化合物更为严重. 现有的流行病学证据表明PPDs和PPDQs可能对人类健康产生不利影响,干扰肝脏和免疫功能,但其毒理学机制尚不清楚. 迫切需要开展更多研究以全面了解PPDs和PPDQs对环境和人类健康的影响.Abstract: p-Phenylenediamines (PPDs) are widely used as antioxidants in the rubber industry to extend the service life of rubber products, such as tires. Their quinone derivatives (PPDQs) have recently garnered significant attention as emerging pollutants due to the acute lethal toxicity to various aquatic organisms. PPDs and PPDQs are ubiquitous in the environment and can enter the human body through various pathways, potentially posing adverse effects on human health. This article provides a comprehensive review of the existing literature on the sources, concentrations, and distributions of PPDs and PPDQs in the environment. Additionally, the exposure levels of PPDs and PPDQs among different populations through various pathways and their potential health risks are evaluated. The study results indicate that the concentrations and distributions of PPDs and PPDQs in the environment are influenced by numerous factors, such as temperature, light, ozone, and hydrological conditions. It is evident that people are commonly exposed to various PPDs and PPDQs, with higher internal exposure levels observed for PPDQs compared to their parent compounds. Existing epidemiological evidence suggests that exposure to PPDs and PPDQs may have adverse effects on human health, potentially disrupting liver and immune functions, whereas the toxicological mechanisms remain unclear. Further research is urgently needed to comprehensively understand the environmental and health impacts of PPDs and PPDQs.
-
Key words:
- p-phenylenediamine /
- 6PPD quinone /
- concentration /
- exposure route /
- health risk.
-
表 1 PPDs及其相对应的PPDQs的缩写及理化性质
Table 1. The abbreviations and physicochemical properties of PPDs and their corresponding PPDQs
橡胶抗氧化剂
Rubber antioxidant缩写
Abbreviation相对分子质量
Molecular
weightCAS 正辛醇/水
分配系数
lgKowPPD衍生物
PPD
derivative相对分子质量
Molecular
weightCAS 正辛醇/水
分配系数
lgKowN-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine 6PPD 268.19 793-24-8 4.64 6PPDQ 298.17 2754428 -18-53.94 N-(1,4-dimethylpentyl)-N′-phenylbenzene-1,4-diamine 7PPD 282.4 3081 -01-45.17 7PPDQ 312.37 NA 4.47 N-(1-methylheptyl)-N′-phenyl-1,4-benzenediamine 8PPD 296.45 15233 -47-35.74 8PPDQ 326.42 NA 5.03 N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine 77PD 304.29 3081 -14-96.30 77PDQ 334.26 NA 5.47 N-(1,4-dimethylpentyl)-N′-phenylbenzene-1,4-diamine IPPD 226.15 101-72-4 3.28 IPPDQ 256.12 68054 -73-92.58 N-phenyl-N'-cyclohexyl-p-phenylenediamine CPPD 266.18 101-87-1 3.28 CPPDQ 296.37 68054 -78-43.46 N,N'-diphenyl-p-phenylenediamine DPPD 260.13 74-31-7 4.47 DPPDQ 290.32 3421 -08-73.98 N,N'-bis(methylphenyl)-1,4-benzenediamine DTPD 288.38 15017 -02-45.13 DTPDQ 350.43 252950 -56-44.56 表 2 PPDs和PPDQs的来源以及浓度(μg·g−1) [2]
Table 2. The sources and concentrations of PPDs and PPDQs (μg·g−1)
污染物
Pollutant轮胎磨损颗粒
Tire wear particle人造草皮场橡胶粒
Crumb rubber再生轮胎橡胶门垫
Doormat运动鞋鞋底
Sneaker Sole实验室瓶塞
Laboratory stopper花园橡胶软管
Garden hose6PPD 2300 1.2 (0.047—95) 630 (500—770) 0.14 (0.051—0.41) 0.71 (ND—3.7) 0.071 7PPD 13 0.022 (ND—0.26) 0.55 (0.2—0.9) ND 0.026 (ND—0.034) ND 77PD ND ND ND ND ND ND IPPD 0.89 0.11 (ND—0.12) 0.24 (0.16—0.32) ND ND ND DPPD 30 1.1 (0.12—18) 26 (3.9—49) ND (ND—0.08) 0.34 (ND—1.7) ND DTPD 300 20 (0.2—160) 190 (20—360) 0.19 (ND—0.69) 5 (ND—16) ND DNPD ND ND (ND—0.03) 1.5 (ND—3) 0.27 (ND—1.1) ND 0.074 6PPDQ 12 9.8 (0.3—25) 18 (11—26) 0.48 (0.37—0.75) 0.74 (ND—1.7) ND 7PPDQ 0.1 0.077 (ND—0.23) 0.02 (ND—0.04) ND ND (ND—0.015) ND DPPDQ 5.7 1.6 (0.8—4) 1.5 (ND—3.1) ND ND (ND—0.84) ND DTPDQ 1.6 0.37 (0.099—1.2) 0.43 (0.066—0.79) 0.03 (0.027—0.048) ND (ND—0.075) ND ND,未检出. ND, Not detected. 表 3 大气、灰尘和土壤中PPDs和PPDQs的浓度
Table 3. Concentrations of PPDs and PPDQs in the atmosphere, dust, and soil
样本类型
Sample type大气细颗粒物/(pg·m−3)
PM2.5车间灰尘/(ng·g−1)
Indoor dust室外灰尘/(ng·g−1)
Outdoor dust室内灰尘/(ng·g−1)
Indoor dust室内灰尘/(ng·g−1)
Indoor dust路边土壤/(ng·g−1)
Soil采样区域 广州 太原 香港 华中地区 华中地区 杭州 天津 香港 采样点 广东工业大学 山西大学 香港浸会大学 电子垃圾回收区 电子垃圾回收区 住宅公寓 住宅 新界和九龙 采样时间 2017年5月—2018 年4月 2017年5月—2018年4月 2021年8—9月 2020年10—11月 2020年10—11 月 2022年7—8月 2022年7—12月 2021年8—9月 样本量 24 24 16 76 30 97 97 12 参考文献 [39] [39] [6] [36] [36] [7] [14] [6] 6PPD 1820 (22.2— 6050 )81 (1.02— 3190 )1.78 (0.82—6.30) 4.01 (0.854—310) 3.92 (0.708—76.6) 10 (0.48—135) 1.118 (ND—147.1) 309 (31.4—831) 7PPD 6.23 (ND—18.7) ND (ND—75.0) 77PD 413 (ND— 2980 )3.78 (ND— 4150 )IPPD 230 (1.71— 3690 )125 (0.49— 2830 )0.91 (0.44—2.73) 62.0 (ND—940) 8.10 (ND—78.7) 0.92 (ND—19) 1.703 (ND— 1359 )1.13 (0.66—24.5) CPPD 64.3 (ND—431) 5.7 (ND—27.5) 0.38 (ND—0.74) ND (ND—16.3) ND (ND—2.64) 1.9 (ND—19) 0.294 (ND—184.6) 1.19 (0.73—15.4) DPPD 553 (55.0— 2590 )374 (0.69—1940) 0.5 (ND—0.70) 2.21 (ND—26.0) 0.173 (ND—1.15) 0.97 (ND—12) ND (ND—4.742) 11.8 (3.63—84.4) DTPD 22.4 (14.7—27.1) 3.23 (ND—9.03) 2.86 (ND—2.88) 57.7 (5.64—684) 14.6 (3.94—38.9) 5.4 (ND—48) ND (ND—50.80) 4.82 (ND—6.78) DNPD 16.3 (ND—35.6) 5.22 (ND—36.7) ND (ND—44.3) 1.2 (1.2—20) ND (ND—0.687) 6PPDQ 1100 (3.04—2350 )744 (2.44— 1780 )1.18 (0.54—13.8) 36.4 (3.74—311) 10.2 (1.74—55.8) 9.5 (0.33—82) 11.87 (ND—104.1) 234 (9.50—936) 77PDQ 527 (0.57— 2990 )11.3 (ND— 2870 )IPPDQ 65.5 (ND—131) 2220 (ND—2940 )0.82 (ND—86.36) 23.9 (ND—312) 0.24 (ND—1.80) 0.2 (ND—0.94) 0.804 (ND—99.30) 3.06 (ND—564) CPPDQ 12.4 (ND—31.4) 1280 (ND—1380 )0.17 (ND—17.5) 31.5 (4.90—732) 3.75 (ND—17.6) 0.64 (ND—17) 15.49 (ND—597.7) 3.12 (ND—152) DPPDQ 41.5 (ND—512) 552 (ND—766) 1.91 (0.93—95.7) 781 (7.90— 3900 )315 (96.7— 2980 )1.2 (ND—11) 1565 (ND—11590 )60.2 (2.87—747) DTPDQ ND (ND—0.73) 0.36 (ND—3.23) 0.13 (ND—7.96) 16.5 (0.272—190) 0.77 (0.135—3.64) 3.3 (ND—31) 2.514 (ND—47.76) 7.94 (1.94—107) DNPDQ 156 (29.2—1920) 202 (40.5— 652) 48.65 (ND—517.7) ND,未检出. ND, Not detected. 表 4 水体介质中PPDs和PPDQs的浓度
Table 4. Concentrations of PPDs and PPDQs in water
样本类型 地表径流水/(ng·L−1)
Runoff water地表径流水/(ng·L−1)
Runoff water废水(进水)/(ng·L−1)
Wastewater influent废水(出水)/(ng·L−1)
Wastewater effluent废水处理生物固体/(ng·g−1)
Biosolids沉积物/(ng·g−1)
Sediment大气雪/(pg·g−1)
Atmospheric snow融雪/(pg·mL−1)
Snow melt采样区域 浙江 香港 香港 香港 香港 浙江 郑州 郑州 采样点 台州椒江入海口 九龙交通密集城区 污水处理厂 污水处理厂 污水处理厂 台州椒江入海口 天鉴湖公园 天鉴湖公园 采样时间 2022年10月 2021年8月 2021年10—11月 2021年10—11月 2021年10—11月 2022年10月 2022年1—2月 2022年1—2月 样本量 30 9 40 8 30 9 9 参考文献 [53] [6] [62] [62] [62] [53] [67] [67] 6PPD 10 (4.0—72) 0.32 (0.21—2.71) 12 (1.1—59) 0.30 (ND—15) 5.5 (2.1—71) 25 (1.6—172) 13 (10—16) 12 (9.5—15) 7PPD 0.31 (ND—4.6) 1.2 (ND—8.9) 77PD 0.087 (ND—0.67) 0.71 (ND—1.9) IPPD 1.9 (ND—8.9) 0.32 (0.21—2.71) 5.5 (0.63—33) 0.71 (0.13—28) 0.47 (0.25—1.9) 1.3 (ND—42) 17 (13—69) 16 (12—64) CPPD 1.5 (ND—7.0) 0.01 (ND—0.05) 0.40 (ND—1.2) 0.13 (0.05—0.2) 0.65 (0.48—0.83) 3.3 (ND—18) 10 (6.3—19) 9.4 (5.9—18) DPPD 1.5 (ND—7.0) 0.01 (0.01—0.02) 0.56 (0.39—1.2) 0.20 (ND—0.28) 0.64 (0.49—2.0) 6 (ND—17) 8.2 (5.1—10) 7.7 (4.8—9.4) DTPD ND (ND—0.81) 0.01 (ND—0.01) 0.35 (ND—1.3) ND (ND—0.3) 0.54 (0.53—0.74) 3.8 (ND—10) 4.5 (3.2—9.2) 4.2 (3—8.6) DNPD 15 (11—33) 14 (11—30) 6PPDQ 6.1 (ND—21) 1.12 (0.21—2.43) 53 (1.9—470) 3.4 (1.1—37) 6.4 (2.6—7.3) 19 (ND—46) 5.6 (3.7—10) 5.2 (3.5—9.5) 7PPDQ 0.15 (ND—0.63) 0.84 (ND—7.3) 77PDQ ND (ND—1.9) 1.12 (0.21—2.43) 0.1 (ND—0.54) IPPDQ 0.18 (ND—7.4) 0.56 (0.18—0.95) 0.96 (0.36—3.5) 0.41 (0.06—1.7) 0.19 (ND—0.39) 1.3 (ND—42) 7.9 (5.5—16) 7.4 (5.1—15) CPPDQ 1.5 (ND—8.6) 0.06 (ND—0.31) 0.20 (ND—0.36) 0.04 (ND—0.16) 1.2 (0.35—2.5) 2.8 (ND—25) 6.1 (5—12) 5.7 (5—12) DPPDQ ND (ND—4.0) 0.19 (0.11—0.35) 110 (11—360) 4.3 (1.1—100) 45 (19—240) 1.8 (ND—29) 17 (10—24) 16 (10—22) DTPDQ 0.02 (0.01—0.82) ND ND ND 6 (4.6—116) 5.6 (4.3—109) 表 5 人体PPDs和PPDQs的浓度
Table 5. Concentrations of PPDs and PPDQs in human body fluids
样本类型
Sample type尿液
Urine尿液
Urine母乳
Human milk血清
Serum血清
Serum采样区域 天津 浙江省衢州市 华南地区广州 中国南方地区 中国南方地区 采样点 普通居民 普通人群 一般城市人口 健康人群 非酒精性脂肪性肝病人群 采样时间 2022年7—12月 2019 年 4 月 2020—2021 年 2021年12月—2022 年6月 2021年12月—2022 年6月 样本量 97 151 120 143 138 参考文献 [14] [8] [9] [73] [73] 检出率 /%
Detection frequency浓度/(ng·mL−1)
Concentration检出率 /%
Detection frequency浓度/(ng·mL−1)
Concentration检出率 /%
Detection frequency浓度/(pg·mL−1)
Concentration检出率 /%
Detection frequency浓度/(ng·mL−1)
Concentration检出率/%
Detection frequency浓度/(ng·mL−1)
Concentration6PPD 34 ND (ND—0.119) 82 1.1 (ND—3.8) 52 4.10 (ND—57.4) 64 0.057 (ND—1.73) 72 0.071 (ND—0.65) 7PPD 75 0.61 (ND—2.3) 77PD 44 ND (ND—0.88) IPPD 65 0.040 (ND—0.952) 78 0.092 (ND—0.93) 15 ND (ND—161) 60 0.050 (ND—0.27) 62 0.040 (ND—1.78) CPPD 18 ND (ND—0.211) 69 0.84 (ND—2.5) DPPD 75 0.13 (ND—0.85) DTPD 17 ND (ND—0.426) 24 ND (ND—1.3) DNPD 3 ND (ND—0.015) 34 ND (ND—1.6) 6PPDQ 27 ND (ND—0.073) 0 ND 71 0.13 (ND—1.06) 73 0.20 (ND—0.78) IPPDQ 31 ND (ND—0.300) 0 ND 47 ND (ND—0.011) 64 0.0033 (ND—0.015)CPPDQ 90 0.165 (ND—1.118) DPPDQ 89 3.436 (ND—15.51) DTPDQ 22 ND (ND—3.511) DNPDQ 98 0.158 (ND—1.206) 表 6 不同人群通过多种途径对PPDs和PPDQs的每日摄入量
Table 6. Daily intakes of PPDs and PPDQs in different populations through multiple pathways
暴露类型
Exposure type地点
Area暴露方式
Exposure pathway暴露人群
Exposure population参考文献
ReferencePPDs PPDQs 污染物
Pollutant每日摄入量/(ng·kg−1bw·d−1)
Daily intake污染物
Pollutant每日摄入量/(ng·kg−1bw·d−1)
Daily intake职业暴露 华中地区 车间灰尘摄入 电子垃圾回收职业工人 [36] ∑6PPDs (DPPD, CPPD, 6PPD, IPPD, DNPD, and DTPD) 0.073 (0.021—0.094) ∑6PPDQs (DPPDQ,
CPPDQ, 6PPDQ, IPPDQ, DNPDQ, and DTPDQ)0.595 (0.258—0.687) 皮肤吸收 0.004 (4.18×10−6—0.016) 0.226 (0.002—1.00) 普通人群暴露 中国香港 空气吸入和土壤摄入 儿童 [6] ∑5PPDs (DPPD, CPPD, 6PPD, IPPD, and DTPD) 4.85 ∑5PPDQs (DPPDQ, CPPDQ, 6PPDQ, IPPDQ, and DTPDQ) 7.30 成人 0.71 1.08 普通人群暴露 杭州 室内灰尘暴露 婴儿 [7] DPPD, CPPD, 6PPD, IPPD, DNPD, and DTPD 2.6—54 DPPDQ, CPPDQ, 6PPDQ, and IPPDQ, DTPDQ 0.85—44 儿童 1.1—23 0.37—19 成人 0.55—11 0.18—9.5 普通人群暴露 中国多个省份 道路灰尘摄入 儿童 [29] ∑6PPDs (IPPD, CPPD, DPPD, 6PPD, 77PD, and DNPD) 0.143 6PPDQ 0.076 成人 0.081 0.043 皮肤吸收 儿童 0.021 0.011 成人 0.016 0.0084 普通人群暴露 中国香港 空气吸入 儿童 [39] ∑8PPDs (IPPD, CPPD, 6PPD, 7PPD, 77PD, DPPD, DTPD, and DNPD) 0.194 ∑6PPDQs (IPPDQ, CPPDQ, 6PPDQ, 77PDQ, DPPDQ, and DTPDQ) 0.161 成人居民 0.24 0.439 工人 0.408 0.338 普通人群暴露 杭州 自来水摄入 儿童 [79] ∑8PPDs (IPPD, CPPD, 6PPD, 7PPD, 77PD, DPPD, DTPD, and DNPD) 0.011—0.031 成人 0.014—0.04 -
[1] ZHANG H Y, HUANG Z, LIU Y H, et al. Occurrence and risks of 23 tire additives and their transformation products in an urban water system[J]. Environment International, 2023, 171: 107715. doi: 10.1016/j.envint.2022.107715 [2] ZHAO H N, HU X M, GONZALEZ M, et al. Screening p-phenylenediamine antioxidants, their transformation products, and industrial chemical additives in crumb rubber and elastomeric consumer products[J]. Environmental Science & Technology, 2023, 57(7): 2779-2791. [3] ZHANG Y J, XU T T, YE D M, et al. Widespread N-(1, 3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone in size-fractioned atmospheric particles and dust of different indoor environments[J]. Environmental Science & Technology Letters, 2022, 9(5): 420-425. [4] ZENG L X, LI Y, SUN Y X, et al. Widespread occurrence and transport of p-phenylenediamines and their quinones in sediments across urban rivers, estuaries, coasts, and deep-sea regions[J]. Environmental Science & Technology, 2023, 57(6): 2393-2403. [5] HU X M, ZHAO H N, TIAN Z Y, et al. Transformation product formation upon heterogeneous ozonation of the tire rubber antioxidant 6PPD (N-(1, 3-dimethylbutyl)-N′-phenyl-p-phenylenediamine)[J]. Environmental Science & Technology Letters, 2022, 9(5): 413-419. [6] CAO G D, WANG W, ZHANG J, et al. New evidence of rubber-derived quinones in water, air, and soil[J]. Environmental Science & Technology, 2022, 56(7): 4142-4150. [7] ZHU J Q, GUO R Y, JIANG S T, et al. Occurrence of p-phenylenediamine antioxidants (PPDs) and PPDs-derived quinones in indoor dust[J]. Science of the Total Environment, 2024, 912: 169325. doi: 10.1016/j.scitotenv.2023.169325 [8] MAO W L, JIN H B, GUO R Y, et al. Occurrence of p-phenylenediamine antioxidants in human urine[J]. Science of the Total Environment, 2024, 914: 170045. doi: 10.1016/j.scitotenv.2024.170045 [9] LIANG B W, GE J L, DENG Q, et al. Occurrence of multiple classes of emerging synthetic antioxidants, including p-phenylenediamines, diphenylamines, naphthylamines, macromolecular hindered phenols, and organophosphites, in human milk: Implications for infant exposure[J]. Environmental Science & Technology Letters, 2024, 11(3): 259-265. [10] HUA X, WANG D Y. Tire-rubber related pollutant 6-PPD quinone: A review of its transformation, environmental distribution, bioavailability, and toxicity[J]. Journal of Hazardous Materials, 2023, 459: 132265. doi: 10.1016/j.jhazmat.2023.132265 [11] VARSHNEY S, GORA A H, SIRIYAPPAGOUDER P, et al. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae[J]. Journal of Hazardous Materials, 2022, 424(Part C): 127623. [12] MATSUMOTO M, YAMAGUCHI M, YOSHIDA Y, et al. An antioxidant, N, N′-diphenyl-p-phenylenediamine (DPPD), affects labor and delivery in rats: A 28-day repeated dose test and reproduction/developmental toxicity test[J]. Food and Chemical Toxicology, 2013, 56: 290-296. doi: 10.1016/j.fct.2013.02.029 [13] BACHAREWICZ-SZCZERBICKA J, REDUTA T, PAWŁOŚ A, et al. Paraphenylenediamine and related chemicals as allergens responsible for allergic contact dermatitis[J]. Archives of Medical Science: AMS, 2019, 17(3): 714-723. [14] GUO Z J, CHENG Z P, ZHANG S H, et al. Unexpected exposure risks to emerging aromatic amine antioxidants and p-phenylenediamine quinones to residents: Evidence from external and internal exposure as well as hepatotoxicity evaluation[J]. Environment & Health, 2024, 2(5): 278-289. [15] WANG W, CHEN Y, FANG J C, et al. Toxicity of substituted p-phenylenediamine antioxidants and their derived novel quinones on aquatic bacterium: Acute effects and mechanistic insights[J]. Journal of Hazardous Materials, 2024, 469: 133900. doi: 10.1016/j.jhazmat.2024.133900 [16] TIAN Z Y, ZHAO H Q, PETER K T, et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon[J]. Science, 2021, 371(6525): 185-189. doi: 10.1126/science.abd6951 [17] JIANG Y, WANG C Z, MA L, et al. Environmental profiles, hazard identification, and toxicological hallmarks of emerging tire rubber-related contaminants 6PPD and 6PPD-quinone[J]. Environment International, 2024, 187: 108677. doi: 10.1016/j.envint.2024.108677 [18] WU J B, CAO G D, ZHANG F, et al. A new toxicity mechanism of N-(1, 3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone: Formation of DNA adducts in mammalian cells and aqueous organisms[J]. Science of the Total Environment, 2023, 866: 161373. doi: 10.1016/j.scitotenv.2022.161373 [19] LYU Y, GUO H B, CHENG T T, et al. Particle size distributions of oxidative potential of lung-deposited particles: Assessing contributions from quinones and water-soluble metals[J]. Environmental Science & Technology, 2018, 52(11): 6592-6600. [20] RAUERT C, CHARLTON N, OKOFFO E D, et al. Concentrations of tire additive chemicals and tire road wear particles in an Australian urban tributary[J]. Environmental Science & Technology, 2022, 56(4): 2421-2431. [21] HUANG W, SHI Y M, HUANG J L, et al. Occurrence of substituted p-phenylenediamine antioxidants in dusts[J]. Environmental Science & Technology Letters, 2021, 8(5): 381-385. [22] IKARASHI Y, KANIWA M A. Determination of p-phenylenediamine and related antioxidants in rubber boots by high performance liquid chromatography. Development of an analytical method for N-(1-Methylheptyl)-N'-phenyl-p-phenylenediamine[J]. Journal of Health Science, 2000, 46(6): 467-473. doi: 10.1248/jhs.46.467 [23] CATALDO F. On the ozone protection of polymers having non-conjugated unsaturation[J]. Polymer Degradation and Stability, 2001, 72(2): 287-296. doi: 10.1016/S0141-3910(01)00017-9 [24] WEYRAUCH S, SEIWERT B, VOLL M, et al. Accelerated aging of tire and road wear particles by elevated temperature, artificial sunlight and mechanical stress—A laboratory study on particle properties, extractables and leachables[J]. Science of the Total Environment, 2023, 904: 166679. doi: 10.1016/j.scitotenv.2023.166679 [25] KOLE P J, LÖHR A J, van BELLEGHEM F G A J, et al. Wear and tear of tyres: A stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. doi: 10.3390/ijerph14101265 [26] HU X M, ZHAO H N, TIAN Z Y, et al. Chemical characteristics, leaching, and stability of the ubiquitous tire rubber-derived toxicant 6PPD-quinone[J]. Environmental Science. Processes & Impacts, 2023, 25(5): 901-911. [27] HIKI K, YAMAMOTO H. Concentration and leachability of N-(1, 3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan[J]. Environmental Pollution, 2022, 302: 119082. doi: 10.1016/j.envpol.2022.119082 [28] STACK M E, HOLLMAN K, MLADENOV N, et al. Micron-size tire tread particles leach organic compounds at higher rates than centimeter-size particles: Compound identification and profile comparison[J]. Environmental Pollution, 2023, 334: 122116. doi: 10.1016/j.envpol.2023.122116 [29] ZHANG Y Y, YAN L, WANG L X, et al. A nation-wide study for the occurrence of PPD antioxidants and 6PPD-quinone in road dusts of China[J]. Science of the Total Environment, 2024, 922: 171393. doi: 10.1016/j.scitotenv.2024.171393 [30] KOLE P J, van BELLEGHEM F G A J, STOORVOGEL J J, et al. Tyre granulate on the loose;How much escapes the turf?A systematic literature review[J]. Science of the Total Environment, 2023, 903: 166221. doi: 10.1016/j.scitotenv.2023.166221 [31] ARMADA D, MARTINEZ-FERNANDEZ A, CELEIRO M, et al. Assessment of the bioaccessibility of PAHs and other hazardous compounds present in recycled tire rubber employed in synthetic football fields[J]. Science of the Total Environment, 2023, 857: 159485. doi: 10.1016/j.scitotenv.2022.159485 [32] SCHNEIDER K, de HOOGD M, MADSEN M P, et al. ERASSTRI - European risk assessment study on synthetic turf rubber infill - Part 1: Analysis of infill samples[J]. Science of the Total Environment, 2020, 718: 137174. doi: 10.1016/j.scitotenv.2020.137174 [33] LIU R Z, LI Y L, LIN Y F, et al. Emerging aromatic secondary amine contaminants and related derivatives in various dust matrices in China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 657-663. doi: 10.1016/j.ecoenv.2018.12.036 [34] ZHANG Z X, DAI C X, CHEN S Y, et al. Spatiotemporal variation of 6PPD and 6PPDQ in dust and soil from e-waste recycling areas[J]. Science of the Total Environment, 2024, 923: 171495. doi: 10.1016/j.scitotenv.2024.171495 [35] LIANG B W, LI J H, DU B B, et al. E-waste recycling emits large quantities of emerging aromatic amines and organophosphites: A poorly recognized source for another two classes of synthetic antioxidants[J]. Environmental Science & Technology Letters, 2022, 9(7): 625-631. [36] ZHANG S H, CHENG Z P, CAO Y H, et al. Aromatic amine antioxidants (AAs) and p-phenylenediamines-quinones (PPD-Qs) in e-waste recycling industry park: Occupational exposure and liver X receptors (LXRs) disruption potential[J]. Environment International, 2024, 186: 108609. doi: 10.1016/j.envint.2024.108609 [37] ARAUJO J A, NEL A E. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress[J]. Particle and Fibre Toxicology, 2009, 6: 24. doi: 10.1186/1743-8977-6-24 [38] ZHANG Y H, XU C H, ZHANG W F, et al. p-Phenylenediamine antioxidants in PM2.5: The underestimated urban air pollutants[J]. Environmental Science & Technology, 2022, 56(11): 6914-6921. [39] WANG W, CAO G D, ZHANG J, et al. Beyond substituted p-phenylenediamine antioxidants: Prevalence of their quinone derivatives in PM2.5[J]. Environmental Science & Technology, 2022, 56(15): 10629-10637. [40] WU Y, VENIER M, HITES R A. Broad exposure of the North American environment to phenolic and amino antioxidants and to ultraviolet filters[J]. Environmental Science & Technology, 2020, 54(15): 9345-9355. [41] LI R J, KOU X J, GENG H, et al. Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan[J]. Chinese Chemical Letters, 2014, 25(5): 663-666. doi: 10.1016/j.cclet.2014.03.032 [42] XING F, HUANG H L, ZHAN Z Y, et al. Hourly associations between weather factors and traffic crashes: Non-linear and lag effects[J]. Analytic Methods in Accident Research, 2019, 24: 100109. doi: 10.1016/j.amar.2019.100109 [43] GRAMSCH E, CÁCERES D, OYOLA P, et al. Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration[J]. Atmospheric Environment, 2014, 98: 290-298. doi: 10.1016/j.atmosenv.2014.08.066 [44] ROSSOMME E, HART-COOPER W M, ORTS W J, et al. Computational studies of rubber ozonation explain the effectiveness of 6PPD as an antidegradant and the mechanism of its quinone formation[J]. Environmental Science & Technology, 2023, 57(13): 5216-5230. [45] WANG W, CAO G D, ZHANG J, et al. p-Phenylenediamine-derived quinones as new contributors to the oxidative potential of fine particulate matter[J]. Environmental Science & Technology Letters, 2022, 9(9): 712-717. [46] HWANG H M, FIALA M J, WADE T L, et al. Review of pollutants in urban road dust: Part II. Organic contaminants from vehicles and road management[J]. International Journal of Urban Sciences, 2019, 23(4): 445-463. doi: 10.1080/12265934.2018.1538811 [47] MERCIER F, GLORENNEC P, THOMAS O, et al. Organic contamination of settled house dust, a review for exposure assessment purposes[J]. Environmental Science & Technology, 2011, 45(16): 6716-6727. [48] MUJAN I, ANĐELKOVIĆ A S, MUNĆAN V, et al. Influence of indoor environmental quality on human health and productivity - A review[J]. Journal of Cleaner Production, 2019, 217: 646-657. doi: 10.1016/j.jclepro.2019.01.307 [49] DENG C L, HUANG J L, QI Y Q, et al. Distribution patterns of rubber tire-related chemicals with particle size in road and indoor parking lot dust[J]. Science of the Total Environment, 2022, 844: 157144. doi: 10.1016/j.scitotenv.2022.157144 [50] SEIWERT B, NIHEMAITI M, TROUSSIER M, et al. Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater[J]. Water Research, 2022, 212: 118122. doi: 10.1016/j.watres.2022.118122 [51] ZHANG R L, ZHAO S Z, LIU X, et al. Aquatic environmental fates and risks of benzotriazoles, benzothiazoles, and p-phenylenediamines in a catchment providing water to a megacity of China[J]. Environmental Research, 2023, 216: 114721. doi: 10.1016/j.envres.2022.114721 [52] JOHANNESSEN C, HELM P, LASHUK B, et al. The tire wear compounds 6PPD-quinone and 1, 3-diphenylguanidine in an urban watershed[J]. Archives of Environmental Contamination and Toxicology, 2022, 82(2): 171-179. doi: 10.1007/s00244-021-00878-4 [53] ZHU J Q, GUO R Y, REN F F, et al. Occurrence and partitioning of p-phenylenediamine antioxidants and their quinone derivatives in water and sediment[J]. Science of the Total Environment, 2024, 914: 170046. doi: 10.1016/j.scitotenv.2024.170046 [54] ZHOU Y J, YIXI L C, KONG Q Q, et al. Sunlight-induced transformation of tire rubber antioxidant N-(1, 3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) to 6PPD-Quinone in water[J]. Environmental Science & Technology Letters, 2023, 10(9): 798-803. [55] CHIAIA-HERNÁNDEZ A C, CASADO-MARTINEZ C, LARA-MARTIN P, et al. Sediments: Sink, archive, and source of contaminants[J]. Environmental Science and Pollution Research International, 2022, 29(57): 85761-85765. doi: 10.1007/s11356-022-24041-1 [56] AHRENS L, YAMASHITA N, YEUNG L W Y, et al. Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan[J]. Environmental Science & Technology, 2009, 43(18): 6969-6975. [57] MALMON D V, DUNNE T, RENEAU S L. Predicting the fate of sediment and pollutants in river floodplains[J]. Environmental Science & Technology, 2002, 36(9): 2026-2032. [58] MAI B X, CHEN S J, LUO X J, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea[J]. Environmental Science & Technology, 2005, 39(10): 3521-3527. [59] XIE J W, JIN L, WU D, et al. Inhalable antibiotic resistome from wastewater treatment plants to urban areas: Bacterial hosts, dissemination risks, and source contributions[J]. Environmental Science & Technology, 2022, 56(11): 7040-7051. [60] XUE F F, TANG B, BIN L Y, et al. Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta[J]. Science of the Total Environment, 2019, 657: 696-703. doi: 10.1016/j.scitotenv.2018.12.008 [61] KAZOUR M, TERKI S, RABHI K, et al. Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill[J]. Marine Pollution Bulletin, 2019, 146: 608-618. doi: 10.1016/j.marpolbul.2019.06.066 [62] CAO G D, WANG W, ZHANG J, et al. Occurrence and fate of substituted p-phenylenediamine-derived quinones in Hong Kong wastewater treatment plants[J]. Environmental Science & Technology, 2023, 57(41): 15635-15643. [63] GRANNAS A M, BOGDAL C, HAGEMAN K J, et al. The role of the global cryosphere in the fate of organic contaminants[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3271-3305. doi: 10.5194/acp-13-3271-2013 [64] BIGOT M, HAWKER D W, CROPP R, et al. Spring melt and the redistribution of organochlorine pesticides in the sea-ice environment: A comparative study between Arctic and Antarctic regions[J]. Environmental Science & Technology, 2017, 51(16): 8944-8952. [65] LEI Y D, WANIA F. Is rain or snow a more efficient scavenger of organic chemicals?[J]. Atmospheric Environment, 2004, 38(22): 3557-3571. doi: 10.1016/j.atmosenv.2004.03.039 [66] JIAO W Z, YANG P Z, GAO W Q, et al. Apparent kinetics of the ozone oxidation of nitrobenzene in aqueous solution enhanced by high gravity technology[J]. Chemical Engineering and Processing - Process Intensification, 2019, 146: 107690. doi: 10.1016/j.cep.2019.107690 [67] ZHANG X, PENG Z F, HOU S J, et al. Ubiquitous occurrence of p-phenylenediamine (PPD) antioxidants and PPD-quinones in fresh atmospheric snow and their amplification effects on associated aqueous contamination[J]. Journal of Hazardous Materials, 2024, 465: 133409. doi: 10.1016/j.jhazmat.2023.133409 [68] YIN C Q, JIANG X, YANG X L, et al. Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China[J]. Chemosphere, 2008, 73(3): 389-394. doi: 10.1016/j.chemosphere.2008.05.041 [69] HAVUGIMANA E, BHOPLE B S, KUMAR A, et al. Soil pollution—major sources and types of soil pollutants[J]. Environmental science and engineering, 2017, 11: 53-86. [70] XU Q, LI G, FANG L, et al. Enhanced formation of 6PPD-Q during the aging of tire wear particles in anaerobic flooded soils: The role of iron reduction and environmentally persistent free radicals[J]. Environmental Science & Technology, 2023, 57(14): 5978-5987. [71] DU B B, LIANG B W, LI Y, et al. First report on the occurrence of N-(1, 3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 6PPD-Quinone as pervasive pollutants in human urine from South China[J]. Environmental Science & Technology Letters, 2022, 9(12): 1056-1062. [72] LIU C Y, ZHAO X C, GUO L Q, et al. Emerging N-(1, 3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 6PPD quinone in paired human plasma and urine from Tianjin, China: Preliminary assessment with demographic factors[J]. Journal of Hazardous Materials, 2024, 476: 134818. doi: 10.1016/j.jhazmat.2024.134818 [73] SONG S M, GAO Y X, FENG S, et al. Widespread occurrence of two typical N, N′-substituted p-phenylenediamines and their quinones in humans: Association with oxidative stress and liver damage[J]. Journal of Hazardous Materials, 2024, 468: 133835. doi: 10.1016/j.jhazmat.2024.133835 [74] ZHANG J, CAO G D, WANG W, et al. Stable isotope-assisted mass spectrometry reveals in vivo distribution, metabolism, and excretion of tire rubber-derived 6PPD-quinone in mice[J]. Science of the Total Environment, 2024, 912: 169291. doi: 10.1016/j.scitotenv.2023.169291 [75] FANG J C, WANG X X, CAO G D, et al. 6PPD-quinone exposure induces neuronal mitochondrial dysfunction to exacerbate Lewy neurites formation induced by α-synuclein preformed fibrils seeding[J]. Journal of Hazardous Materials, 2024, 465: 133312. doi: 10.1016/j.jhazmat.2023.133312 [76] WANG L, WU Y H, ZHANG W, et al. Characteristic profiles of urinary p-hydroxybenzoic acid and its esters (parabens) in children and adults from the United States and China[J]. Environmental Science & Technology, 2013, 47(4): 2069-2076. [77] SCHMIDTKUNZ C, KÜPPER K, WEBER T, et al. A biomonitoring study assessing the exposure of young German adults to butylated hydroxytoluene (BHT)[J]. International Journal of Hygiene and Environmental Health, 2020, 228: 113541. doi: 10.1016/j.ijheh.2020.113541 [78] ZHANG Z X, XU X J, QIAN Z Y, et al. Association between 6PPD-quinone exposure and BMI, influenza, and diarrhea in children[J]. Environmental Research, 2024, 247: 118201. doi: 10.1016/j.envres.2024.118201 [79] ZHU J Q, GUO R Y, REN F F, et al. p-Phenylenediamine derivatives in tap water: Implications for human exposure[J]. Water, 2024, 16(8): 1128. doi: 10.3390/w16081128