-
消化系统疾病是我国的常见病、多发病,也是严重危害人类健康的全球性疾病. 近年来,消化道恶性肿瘤的发病率明显上升,并且有年轻化趋势[1]. 环境暴露与生活方式相关的危险因素对消化系统肿瘤的发生发展有着显著影响[2 − 3]. 有害化学物质的环境暴露是增加罹患癌症风险的重要诱发因素[4]. 双酚类物质(Bisphenols, BPs)是一类人工合成的化学品,广泛应用于塑料、食品接触材料等领域. 然而,BPs也是一类典型的环境内分泌干扰物,与生殖系统损伤、神经发育迟缓和免疫毒性等多种毒性效应有关. 膳食摄入是BPs暴露的主要途径之一[5],伴随外卖餐饮带动的塑料制品消费需求增长,暴露于双酚类污染物的胃肠道健康风险不容忽视[6].
双酚类污染物作为极具代表性的环境内分泌干扰物,被认为是导致近年来全球肥胖、糖尿病、乳腺癌、甲状腺癌和生殖发育障碍发病率上升的环境健康风险因素之一. 然而,双酚类污染物对人体不同组织器官生理功能的扰动机制尚不完全清楚,其体内代谢转化与生物分子相互作用的动态过程仍是一个科学难题.
双酚类污染物对肠道损伤的作用及机制研究
Studies on the role and mechanism of intestinal damage by bisphenol pollutants
-
摘要: 双酚类物质作为一类常用的工业原料,在许多行业中被广泛用作添加剂,特别是在食品包装、罐头食品、玩具、塑料和牙科密封剂等一些日常消费品的生产中,但与此同时,人类经口暴露于双酚类物质的风险也在与日俱增. 由于目前针对双酚类污染物的研究大多集中在内分泌系统、神经系统、生殖系统及免疫系统,有关其对消化系统损伤效应的研究仍十分匮乏,因此,开展非雌激素受体介导的肠道功能损伤研究,是探究环境中双酚类物质暴露对肠道疾病发病潜在影响的迫切需求. 本课题组将关键解决环境剂量水平下的双酚类污染物体内代谢全过程与肠上皮屏障功能损伤的关联机制,进一步重点阐明双酚类污染物是否通过扰动腺苷代谢信号、引发肠道屏障功能障碍作为起始性的关键步骤,进而影响肠道疾病的发病风险.Abstract: Bisphenols, as common industrial raw materials, are widely used as additives in many industries, especially in the production of a number of daily consumer products such as food packaging, canned foods, toys, plastics, and dental sealants. However, the risk of oral exposure of human beings to bisphenols is increasing. Since most of the current research on bisphenol pollutants focuses on the endocrine, nervous, reproductive, and immune systems, there is still a lack of research on their damaging effects on the digestive system. Therefore, studies on non-estrogen receptor-mediated impairments of intestinal function are urgently needed to investigate the potential effects on the pathogenesis of intestinal diseases. This work will critically address the mechanisms linking in vivo metabolism of bisphenol pollutants to the impairment of intestinal epithelial barrier at environmental exposure levels. And further focus was placed on elucidating whether bisphenol pollutants affect the risk of intestinal diseases by perturbing adenosine metabolic signaling and triggering intestinal barrier dysfunction as an initiating critical step, which in turn affects the risk of intestinal diseases.
-
Key words:
- bisphenols /
- adenosine metabolism /
- intestinal barrier /
- metabolomics
-
-
[1] BEN-AHARON I, van LAARHOVEN H W M, FONTANA E, et al. Early-onset cancer in the gastrointestinal tract is on the rise-evidence and implications[J]. Cancer Discovery, 2023, 13(3): 538-551. doi: 10.1158/2159-8290.CD-22-1038 [2] SANMARCO L M, CHAO C C, WANG Y C, et al. Identification of environmental factors that promote intestinal inflammation[J]. Nature, 2022, 611: 801-809. doi: 10.1038/s41586-022-05308-6 [3] WU Y, LI Y P, GIOVANNUCCI E. Potential impact of time trend of lifestyle risk factors on burden of major gastrointestinal cancers in China[J]. Gastroenterology, 2021, 161(6): 1830-1841. e8. [4] PETERS A, NAWROT T S, BACCARELLI A A. Hallmarks of environmental insults[J]. Cell, 2021, 184(6): 1455-1468. doi: 10.1016/j.cell.2021.01.043 [5] ZHANG J, YAO K, YIN J, et al. Exposure to bisphenolic analogues in the sixth total diet study - China, 2016-2019[J]. China CDC Weekly, 2022, 4(9): 180-184. doi: 10.46234/ccdcw2022.044 [6] 生吉萍, 宿文凡, 张靖宇. 食品接触材料中双酚A暴露风险及风险管理[J]. 食品科学技术学报, 2022, 40(1): 167-174. doi: 10.12301/spxb202100147 SHENG J P, SU W F, ZHANG J Y. Risk analysis and management of dietary exposure to bisphenol A from food contact materials[J]. Journal of Food Science and Technology, 2022, 40(1): 167-174 (in Chinese). doi: 10.12301/spxb202100147
[7] VANDENBERG L N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA)[J]. Reproductive Toxicology, 2007, 24(2): 139-177. doi: 10.1016/j.reprotox.2007.07.010 [8] CHEN D, KANNAN K, TAN H L, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-a review[J]. Environmental Science & Technology, 2016, 50(11): 5438-5453. [9] PARK J C, LEE M C, YOON D S, et al. Effects of bisphenol A and its analogs bisphenol F and S on life parameters, antioxidant system, and response of defensome in the marine rotifer Brachionus koreanus[J]. Aquatic Toxicology, 2018, 199: 21-29. doi: 10.1016/j.aquatox.2018.03.024 [10] XIA Z N, LV C, ZHANG Y, et al. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study[J]. Chemosphere, 2023, 341: 139973. doi: 10.1016/j.chemosphere.2023.139973 [11] BIGAMBO F M, WANG D D, SUN J, et al. Association between urinary BPA substitutes and precocious puberty among girls: A single-exposure and mixed exposure approach from a Chinese case-control study[J]. Toxics, 2023, 11(11): 905. doi: 10.3390/toxics11110905 [12] YUAN S F, LIU Z H, LIAN H X, et al. Simultaneous determination of estrogenic odorant alkylphenols, chlorophenols, and their derivatives in water using online headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Environmental Science and Pollution Research, 2016, 23(19): 19116-19125. doi: 10.1007/s11356-016-7107-1 [13] HUANG R P, LIU Z H, YUAN S F, et al. Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000-2016) and its risk analysis[J]. Environmental Pollution, 2017, 230: 143-152. doi: 10.1016/j.envpol.2017.06.026 [14] NI L, ZHONG J, CHI H, et al. Recent advances in sources, migration, public health, and surveillance of bisphenol A and its structural analogs in canned foods[J]. Foods, 2023, 12(10): 1989. doi: 10.3390/foods12101989 [15] NADERI M, WONG M Y L, GHOLAMI F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148: 195-203. doi: 10.1016/j.aquatox.2014.01.009 [16] SHI J C, YANG Y J, ZHANG J, et al. Uptake, depuration and bioconcentration of bisphenol AF (BPAF) in whole-body and tissues of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2016, 132: 339-344. doi: 10.1016/j.ecoenv.2016.05.025 [17] CAO X L, KOSARAC I, POPOVIC S, et al. LC-MS/MS analysis of bisphenol S and five other bisphenols in total diet food samples[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2019, 36(11): 1740-1747. [18] LIU J C, ZHANG L Y, LU G H, et al. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment - A review[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111481. doi: 10.1016/j.ecoenv.2020.111481 [19] GEENS T, AERTS D, BERTHOT C, et al. A review of dietary and non-dietary exposure to bisphenol-A[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2012, 50(10): 3725-3740. doi: 10.1016/j.fct.2012.07.059 [20] LIAO C Y, KANNAN K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(19): 4655-4662. doi: 10.1021/jf400445n [21] ALABI A, CABALLERO-CASERO N, RUBIO S. Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection[J]. Journal of Chromatography. A, 2014, 1336: 23-33. doi: 10.1016/j.chroma.2014.02.008 [22] CACHO J I, CAMPILLO N, VIÑAS P, et al. Stir bar sorptive extraction coupled to gas chromatography-mass spectrometry for the determination of bisphenols in canned beverages and filling liquids of canned vegetables[J]. Journal of Chromatography. A, 2012, 1247: 146-153. doi: 10.1016/j.chroma.2012.05.064 [23] CUNHA S C, ALMEIDA C, MENDES E, et al. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2011, 28(4): 513-526. [24] LIAO C Y, KANNAN K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2014, 31(2): 319-329. [25] YAO K, ZHANG J, YIN J, et al. Bisphenol A and its analogues in Chinese total diets: Contaminated levels and risk assessment[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 8822321. [26] GEUEKE B, GROH K J, MAFFINI M V, et al. Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(28): 9425-9435. doi: 10.1080/10408398.2022.2067828 [27] LU L P, ZHAN T J, MA M, et al. Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β: in vitro , in vivo , and molecular dynamics simulation study[J]. Environmental Science & Technology, 2018, 52(11): 6617-6625. [28] CAO L Y, REN X M, LI C H, et al. Bisphenol AF and bisphenol B exert higher estrogenic effects than bisphenol A via G protein-coupled estrogen receptor pathway[J]. Environmental Science & Technology, 2017, 51(19): 11423-11430. [29] WANG Z, LIU H Y, LIU S J. Low-dose bisphenol A exposure: A seemingly instigating carcinogenic effect on breast cancer[J]. Advanced Science, 2016, 4(2): 1600248. [30] WINKLER J, LIU P Y, PHONG K, et al. Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(11): e2115308119. [31] 任志华, 杨晓溪, 孙振东, 等. 环境内分泌干扰物对雌激素受体表达与转录激活的调控效应及分析技术[J]. 化学进展, 2022, 34(10): 2121-2133. doi: 10.7536/PC220215 REN Z H, YANG X X, SUN Z D, et al. Regulation of environmental endocrine disrupting chemicals on the expressions and transactivation of estrogen receptors and the related analytical techniques[J]. Progress in Chemistry, 2022, 34(10): 2121-2133 (in Chinese). doi: 10.7536/PC220215
[32] YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Effects of oral exposure to low-dose bisphenol S on allergic asthma in mice[J]. International Journal of Molecular Sciences, 2022, 23(18): 10790. doi: 10.3390/ijms231810790 [33] YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice[J]. Toxicology Reports, 2019, 6: 1253-1262. doi: 10.1016/j.toxrep.2019.11.012 [34] GEBRU Y A, PANG M G. Modulatory effects of bisphenol A on the hepatic immune response[J]. Environmental Pollution, 2023, 336: 122430. doi: 10.1016/j.envpol.2023.122430 [35] MENARD S, GUZYLACK-PIRIOU L, LEVEQUE M, et al. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2014, 28(11): 4893-4900. doi: 10.1096/fj.14-255380 [36] MÉNARD S, GUZYLACK-PIRIOU L, LENCINA C, et al. Perinatal exposure to a low dose of bisphenol A impaired systemic cellular immune response and predisposes young rats to intestinal parasitic infection[J]. PLoS One, 2014, 9(11): e112752. doi: 10.1371/journal.pone.0112752 [37] MALAISÉ Y, MENARD S, CARTIER C, et al. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development[J]. Scientific Reports, 2017, 7: 14472. doi: 10.1038/s41598-017-15196-w [38] MALAISÉ Y, MÉNARD S, CARTIER C, et al. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice[J]. Archives of Toxicology, 2018, 92(1): 347-358. doi: 10.1007/s00204-017-2038-2 [39] MALAISÉ Y, LENCINA C, CARTIER C, et al. Perinatal oral exposure to low doses of bisphenol A, S or F impairs immune functions at intestinal and systemic levels in female offspring mice[J]. Environmental Health: a Global Access Science Source, 2020, 19(1): 93. [40] BRANISTE V, JOUAULT A, GAULTIER E, et al. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 448-453. [41] FENG L, CHEN S J, ZHANG L J, et al. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice[J]. Environmental Pollution, 2019, 254(Pt A): 112960. [42] ZHU M, WEI R G, LI Y Y, et al. Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation[J]. The Science of the Total Environment, 2022, 828: 154444. doi: 10.1016/j.scitotenv.2022.154444 [43] MARTEL J, CHANG S H, KO Y F, et al. Gut barrier disruption and chronic disease[J]. Trends in Endocrinology and Metabolism: TEM, 2022, 33(4): 247-265. doi: 10.1016/j.tem.2022.01.002 [44] LINARES R, FERNÁNDEZ M F, GUTIÉRREZ A, et al. Endocrine disruption in Crohn’s disease: Bisphenol A enhances systemic inflammatory response in patients with gut barrier translocation of dysbiotic microbiota products[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(7): e21697. [45] LAI K P, CHUNG Y T, LI R, et al. Bisphenol A alters gut microbiome: Comparative metagenomics analysis[J]. Environmental Pollution, 2016, 218: 923-930. doi: 10.1016/j.envpol.2016.08.039 [46] DeLUCA J A, ALLRED K F, MENON R, et al. Bisphenol-a alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis[J]. Experimental Biology and Medicine, 2018, 243(10): 864-875. doi: 10.1177/1535370218782139 [47] ESTRELA A B, ABRAHAM W R. Adenosine in the inflamed gut: A Janus faced compound[J]. Current Medicinal Chemistry, 2011, 18(18): 2791-2815. doi: 10.2174/092986711796011274 [48] ZHAO H D, LIU M, LV Y B, et al. Dose-response metabolomics and pathway sensitivity to map molecular cartography of bisphenol A exposure[J]. Environment International, 2022, 158: 106893. doi: 10.1016/j.envint.2021.106893 [49] MONTES-GRAJALES D, OLIVERO-VERBEL J. Computer-aided identification of novel protein targets of bisphenol A[J]. Toxicology Letters, 2013, 222(3): 312-320. doi: 10.1016/j.toxlet.2013.08.010 [50] MU X Y, QI S Z, WANG H, et al. Bisphenol analogues induced metabolic effects through eliciting intestinal cell heterogeneous response[J]. Environment International, 2022, 165: 107287. doi: 10.1016/j.envint.2022.107287 [51] CHASSAING B, AITKEN J D, MALLESHAPPA M, et al. Dextran sulfate sodium (DSS)-induced colitis in mice[J]. Current Protocols in Immunology, 2014, 104: 15.25. 1-15.2515. 25.14. [52] JIN H B, ZHU J, CHEN Z J, et al. Occurrence and partitioning of bisphenol analogues in adults' blood from China[J]. Environmental Science & Technology, 2018, 52(2): 812-820. [53] WELIHINDA AA, KAUR M, GREENE K, et al. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias[J]. Cell Signal, 2016, 28(6): 552-560. doi: 10.1016/j.cellsig.2016.02.010