抗生素制药企业废水处理全过程中毒性评价
Toxicity Evaluation of Antibiotic Pharmaceutical Wastewater in the Whole Treatment Process
-
摘要: 抗生素制药废水处理工艺不仅决定最终受纳水体和再生水的生态安全,同时也关系着处理过程中生化处理系统的稳定性。本研究综合利用发光细菌试验、抑菌圈试验、活性污泥呼吸抑制试验以及斑马鱼胚胎毒性试验等多种方法,分析某制药企业在生物处理、膜分离、分盐及蒸发等工艺阶段,25个样品的抗生素废水水样的毒性和抑菌活性。我们的结果发现,末端排放废水和再生水未检测到明显的发光细菌毒性、斑马鱼胚胎发育毒性以及抗菌活性,提示不存在明显的生态风险;但是在废水处理过程中,经厌氧和缺氧处理后,进入好氧系统前的水样显著抑制好氧活性污泥的呼吸作用,表明废水可能对好氧生化系统存在潜在的不利影响,需要优化上一级处理工艺。我们的结果可为该企业的废水处理工艺优化提供指导,同时多项毒性测试方法的整合使用也为同类企业废水的毒性和抗性评价提供了方法学的参考。Abstract: The treatment process for antibiotic pharmaceutical wastewater not only determines the ecological safety of the final effluent and reclaimed water but also is related to the stability of the biochemical treatment system. This study employed the bacterial bioluminescence assay, the zone of inhibition test, the activated sludge oxygen uptake inhibition test and zebrafish embryo toxicity test to evaluate the toxicity and antibacterial activity of 25 samples from an antibiotic pharmaceutical factory, in the process of biological treatment, membrane separation, salt separation and evaporation for wastewater. We found that the final effluent and the reclaimed water did not exert significant toxicities in the bacterial bioluminescence assay and zebrafish embryo toxicity test and the antibacterial activity, suggesting limited ecological risk. However, the water samples after anaerobic and anoxic treatments and before entering the aerobic system inhibited the respiration of aerobic activated sludge, indicating potential adverse effects on the aerobic biochemical system and the need to optimize the upper treatment process. Our results can provide a guidance for the optimization of the wastewater treatment process of this factory. Meanwhile, the integrated use of several toxicity test methods provides a methodological reference for the toxicity and resistance evaluation of wastewater in the same type of factories.
-
-
SONG Y F, ZHANG Z H, LIU Y B, et al. Enhancement of anaerobic treatment of antibiotic pharmaceutical wastewater through the development of iron-based and carbon-based materials: a critical review[J]. Journal of hazardous materials, 2024, 479: 135514. BIELEN A, ŠIMATOVIC[DD(-2.1mm][HT6]'[HT5"][] A, KOSIC[DD(-2.1mm][HT6]'[HT5"][]-VUKŠIC[DD(-2.1mm][HT6]'[HT5"][] J, et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries[J]. Water research, 2017, 126: 79-87. World Health Organization. Guidance on wastewater and solid waste management for manufacturing of antibiotics[R]. Geneva: World Health Organization, 2023: 1-47. HU J R, LYU Y T, CHEN H, et al. Suspect and nontarget screening reveal the underestimated risks of antibiotic transformation products in wastewater treatment plant effluents[J]. Environmental science & technology, 2023, 57(45): 17439-17451. GUDDA F O, WAIGI M G, ODINGA E S, et al. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome[J]. Environmental pollution, 2020, 264: 114752. 生态环境部. 水质急性毒性的测定斑马鱼卵法: HJ 1069—2019[S]. 北京: 生态环境部, 2019: 1-19. 国家环境保护总局. 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 国家环境保护总局, 2002: 1-8. 黑龙江省市场监督管理局. 水质生物毒性的测定发光细菌快速测定法: DB23/T 2750—2020[S]. 哈尔滨: 黑龙江省市场监督管理局, 2020: 1-4. 何锦垚, 魏健, 张嘉雯, 等. 臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报, 2019, 13(10): 2385-2392. HE J Y, WEI J, ZHANG J W, et al. Advanced treatment of antibiotic pharmaceutical wastewater by catalytic ozonation combined with BAF process[J]. Chinese journal of environmental engineering, 2019, 13(10): 2385-2392.
彭安萍, 高虎, 张新波. 制药废水中抗生素抗性的污染特征、检测手段和控制方法[J]. 环境科学, 2024, 45(2): 844-853. PENG A P, GAO H, ZHANG X B. Contamination characteristics, detection methods, and control methods of antibiotic resistance in pharmaceutical wastewater[J]. Environmental science, 2024, 45(2): 844-853.
生态环境部. 污水监测技术规范: HJ 91.1—2019[S]. 北京: 生态环境部, 2019: 1-13. WANG Z J, CHEN F, XU Y Q, et al. Protein model and function analysis in quorum-sensing pathway of Vibrio qinghaiensis sp.-Q67[J]. Biology, 2021, 10(7): 638. XU Y Q, LIU S S, WANG Z J, et al. Commercial personal care product mixtures exhibit hormetic concentration-responses to Vibrio qinghaiensis sp.-Q67[J]. Ecotoxicology and environmental safety, 2018, 162: 304-311. XIONG Y M, CHEN X Y, LI F, et al. Zebrafish larvae acute toxicity test: a promising alternative to the fish acute toxicity test[J]. Aquatic toxicology, 2022, 246: 106143. Organization for Economic Cooperation and Development (OECD). OECD guidelines for the testing of chemicals No. 209 activated sludge, respiration inhibition test (carbon and ammonium oxidation)[R]. Paris: OECD, 2010: 1-20. NASSERI S, EBRAHIMI S, ABTAHI M, et al. Synthesis and characterization of polysulfone/graphene oxide nano-composite membranes for removal of bisphenol A from water[J]. Journal of environmental management, 2018, 205: 174-182. DE SOUZA D I, DOTTEIN E M, GIACOBBO A, et al. Nanofiltration for the removal of norfloxacin from pharmaceutical effluent[J]. Journal of environmental chemical engineering, 2018, 6(5): 6147-6153. MATIN A, JILLANI S M S, BAIG U, et al. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: comparison of removal efficiencies and in-depth analysis of rejection mechanisms[J]. Journal of environmental management, 2023, 338: 117682. -

计量
- 文章访问数: 111
- HTML全文浏览数: 111
- PDF下载数: 46
- 施引文献: 0