硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究

马珊珊, 赵翊翔, 杨硕, 潘宏刚, 文博, 耿世聪, 王国峰, 傅玉栋, 高宇, 崔长春, 姜鑫, 孙卓伦. 硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究[J]. 生态毒理学报, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002
引用本文: 马珊珊, 赵翊翔, 杨硕, 潘宏刚, 文博, 耿世聪, 王国峰, 傅玉栋, 高宇, 崔长春, 姜鑫, 孙卓伦. 硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究[J]. 生态毒理学报, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002
Ma Shanshan, Zhao Yixiang, Yang Shuo, Pan Honggang, Wen Bo, Geng Shicong, Wang Guofeng, Fu Yudong, Gao Yu, Cui Changchun, Jiang Xin, Sun Zhuolun. Effects of Tissue Element Content and Oxidative Stress after Zebrafish (Danio rerio) Exposed to Selenium[J]. Asian journal of ecotoxicology, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002
Citation: Ma Shanshan, Zhao Yixiang, Yang Shuo, Pan Honggang, Wen Bo, Geng Shicong, Wang Guofeng, Fu Yudong, Gao Yu, Cui Changchun, Jiang Xin, Sun Zhuolun. Effects of Tissue Element Content and Oxidative Stress after Zebrafish (Danio rerio) Exposed to Selenium[J]. Asian journal of ecotoxicology, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002

硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究

    作者简介: 马珊珊(1988-),女,博士研究生,研究方向为生态毒理学,E-mail:mashanshan19880211@163.com
    通讯作者: 马珊珊,E-mail:mashanshan19880211@163.com;  耿世聪,E-mail:shiconggeng@163.com; 
  • 基金项目:

    辽宁省自然科学基金资助项目(2023-MSLH-228);沈阳工程学院大学生创新创业训练计划项目(D202404162148068688);沈阳市科学技术计划项目(240706)

  • 中图分类号: X171.5

Effects of Tissue Element Content and Oxidative Stress after Zebrafish (Danio rerio) Exposed to Selenium

    Corresponding authors: Ma Shanshan ;  Geng Shicong ; 
  • Fund Project:
  • 摘要: 以斑马鱼为受试材料,研究了Se(Ⅳ)暴露对斑马鱼组织的元素含量及氧化胁迫的影响。试验分4组,分别为对照组,5 μg·L-1、50 μg·L-1和500 μg·L-1暴露组,处理21 d后,对斑马鱼各组织(脑、鳃、肝、肠、肌肉)中的Se、Al、Cr、Cu、Mg和Zn的含量进行测定,同时测定各组织中超氧化物歧化酶(SOD)活性、谷胱甘肽-S-转移酶(GST)活性、还原型谷胱甘肽(GSH)含量和脂质过氧化产物(MDA)含量。结果显示,与对照组相比,硒处理组斑马鱼各组织呈现不同程度的硒累积,肝组织中硒累积量最高,且元素Cu和Zn显著增加。肝组织中SOD和GSH水平呈现先升高后降低的趋势,500 μg·L-1处理组肝组织中GST活性显著降低56.5%,而肝和鳃组织中MDA分别显著升高3.1倍和1.6倍。研究结果表明硒暴露破坏斑马鱼组织Cu、Zn元素平衡,引起脂质过氧化,诱导斑马鱼肝鳃组织发生氧化胁迫,试验为进一步从元素平衡和氧化胁迫角度研究硒暴露对水生生物的毒性效应奠定了基础。
  • 加载中
  • Zuberbuehler C A, Messikommer R E, Arnold M M, et al. Effects of selenium depletion and selenium repletion by choice feeding on selenium status of young and old laying hens[J]. Physiology & Behavior, 2006, 87(2): 430-440
    Bowie G L, Sanders J G, Riedel G F, et al. Assessing selenium cycling and accumulation in aquatic ecosystems[J]. Water, Air, & Soil Pollution, 1996, 90(1): 93-104
    Lemly A D. Aquatic selenium pollution is a global environmental safety issue[J]. Ecotoxicology and Environmental Safety, 2004, 59(1): 44-56
    National Research Council. Nutrient Requirements of Fish and Shrimp[S]. Washington DC: The National Academies Press, Springer Science & Business Media, 2012
    Hamilton S J. Review of selenium toxicity in the aquatic food chain[J]. Science of the Total Environment, 2004, 326(1/2/3): 1-31
    Hoffman D J. Role of selenium toxicity and oxidative stress in aquatic birds[J]. Aquatic Toxicology, 2002, 57(1/2): 11-26
    Lemly A D. Selenium Assessment in Aquatic Ecosystems: A Guide for Hazard Evaluation and Water Quality Criteria[M]. New York: Springer, 2002: 161
    Deverel S, Gilliom R, Fujii R, et al. Areal distribution of selenium and other inorganic constituents in shallow ground water of the San Luis Drain Service Area, San Joaquin Valley, California; a preliminary study[R]. Sacramento: US Geological Survey, 1984
    Wang Z C, Becker H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer[J]. Nature, 2013, 499(7458): 328-331
    Chapman P. A Pellston Workshop on Selenium in the Aquatic Environment[M]//Ecological Assessment of Selenium in the Aquatic Environment. Boca Raton: CRC Press, 2010: 1-3
    Maier K J, Knight A W. Ecotoxicology of selenium in freshwater systems[J]. Reviews of Environmental Contamination and Toxicology, 1994, 134: 31-48
    孙博, 瞿建宏, 裘丽萍, 等. 二溴海因对吉富罗非鱼血浆的氧化胁迫效应[J]. 农业环境科学学报, 2015, 34(9): 1633-1639

    Sun B, Qu J H, Qiu L P, et al. Effects of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) on plasma antioxidant defense system in GIFT Nile tilapia[J]. Journal of Agro-Environment Science, 2015, 34(9): 1633-1639(in Chinese)

    任海, 李健, 李吉涛, 等. 急性氨氮胁迫对脊尾白虾(Exopalaemon carinicauda)抗氧化系统酶活力及GPx基因表达的影响[J]. 农业环境科学学报, 2014, 33(4): 647-655

    Ren H, Li J, Li J T, et al. Effects of acute ammonia stresses on antioxidant enzyme activities and GPx gene expression in Exopalaemon carinicauda[J]. Journal of Agro-Environment Science, 2014, 33(4): 647-655(in Chinese)

    冯烨. 斑马鱼体内抗氧化酶活性对水体重金属与有机污染的响应研究[D]. 南昌: 南昌航空大学, 2012: 4-7 Feng Y. Response of antioxidant enzyme activity in zebrafish to heavy metals and organic pollution in water[D]. Nanchang: Nanchang Hangkong University, 2012: 4

    -7(in Chinese)

    Ates B, Orun I, Talas Z S, et al. Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+[J]. Fish Physiology and Biochemistry, 2008, 34(1): 53-59
    Ma Y, Wu M, Li D, et al. Embryonic developmental toxicity of selenite in zebrafish (Danio rerio) and prevention with folic acid[J]. Food and Chemical Toxicology, 2012, 50(8): 2854-2863
    Deng X Y, Wu F, Liu Z, et al. The splenic toxicity of water soluble multi-walled carbon nanotubes in mice[J]. Carbon, 2009, 47(6): 1421-1428
    Zhang X L, An L J, Bao Y M, et al. D-galactose administration induces memory loss and energy metabolism disturbance in mice: Protective effects of catalpol[J]. Food and Chemical Toxicology, 2008, 46(8): 2888-2894
    马珊珊, 赵光辉, 常文越, 等. Se(Ⅳ)和Se(Ⅵ)在斑马鱼组织中的累积及对抗氧化系统的影响[J]. 农业环境科学学报, 2019, 38(1): 51-59

    Ma S S, Zhao G H, Chang W Y, et al. Selenium accumulation and its effects on the antioxidant system of zebrafish (Danio rerio) exposed to selenite and selenate[J]. Journal of Agro-Environment Science, 2019, 38(1): 51-59(in Chinese)

    Ma S S, Zhou Y, Chen H X, et al. Selenium accumulation and the effects on the liver of topmouth gudgeon Pseudorasbora parva exposed to dissolved inorganic selenium[J]. Ecotoxicology and Environmental Safety, 2018, 160: 240-248
    Ma S S, Zeng X F, Chen H X, et al. The differences in bioaccumulation and effects between Se(Ⅳ) and Se(VI) in the topmouth gudgeon Pseudorasbora parva[J]. Scientific Reports, 2018, 8(1): 13860
    Kim J H, Kang J C. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium[J]. Ecotoxicology and Environmental Safety, 2014, 104: 96-102
    Li L X, Chen H X, Bi R, et al. Bioaccumulation, subcellular distribution, and acute effects of chromium in Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2015, 34(11): 2611-2617
    Hauser-Davis R A, Silva J A, Rocha R C, et al. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio)[J]. Journal of Trace Elements in Medicine and Biology, 2016, 33: 68-72
    Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia[J]. Kidney International, 1996, 49(5): 1304-1313
    Daneshvar B, Frandsen H, Autrupand H, et al. γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins[J]. Biomarkers, 1997, 2(2): 117-123
    Kohen R, Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[J]. Toxicologic Pathology, 2002, 30(6): 620-650
    Misra S, Niyogi S. Selenite causes cytotoxicity in rainbow trout (Oncorhynchus mykiss) hepatocytes by inducing oxidative stress[J]. Toxicology in Vitro, 2009, 23(7): 1249-1258
    Xie L T, Wu X, Chen H X, et al. A low level of dietary selenium has both beneficial and toxic effects and is protective against Cd-toxicity in the least killifish Heterandria formosa[J]. Chemosphere, 2016, 161: 358-364
    Orun I, Ates B, Selamoglu Z, et al. Effects of various sodium selenite concentrations on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss)[J]. Fresenius Environmental Bulletin, 2005, 14: 18-22
    Nanda D, Tolputt J, Collard K J. Changes in brain glutathione levels during postnatal development in the rat[J]. Brain Research Developmental Brain Research, 1996, 94(2): 238-241
    Rose R C. Cerebral metabolism of oxidized ascorbate[J]. Brain Research, 1993, 628(1/2): 49-55
    Shila S, Subathra M, Devi M A, et al. Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: Reversal by DL-alpha-lipoic acid[J]. Archives of Toxicology, 2005, 79(3): 140-146
    Miller L L, Wang F, Palace V P, et al. Effects of acute and subchronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout[J]. Aquatic Toxicology, 2007, 83(4): 263-271
    Masukawa T, Nishimura T, Iwata H. Differential changes of glutathione S-transferase activity by dietary selenium[J]. Biochemical Pharmacology, 1984, 33(16): 2635-2639
    Kim J H, Kang J C. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations[J]. Chemosphere, 2015, 135: 46-52
    Misra S, Hamilton C, Niyogi S. Induction of oxidative stress by selenomethionine in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss)[J]. Toxicology in Vitro, 2012, 26(4): 621-629
    Spallholz J E, Hoffman D J. Selenium toxicity: Cause and effects in aquatic birds[J]. Aquatic Toxicology, 2002, 57(1/2): 27-37
    Lavado R, Shi D L, Schlenk D. Effects of salinity on the toxicity and biotransformation of l-selenomethionine in Japanese medaka (Oryzias latipes) embryos: Mechanisms of oxidative stress[J]. Aquatic Toxicology, 2012, 108: 18-22
  • 加载中
计量
  • 文章访问数:  543
  • HTML全文浏览数:  543
  • PDF下载数:  154
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-13
马珊珊, 赵翊翔, 杨硕, 潘宏刚, 文博, 耿世聪, 王国峰, 傅玉栋, 高宇, 崔长春, 姜鑫, 孙卓伦. 硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究[J]. 生态毒理学报, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002
引用本文: 马珊珊, 赵翊翔, 杨硕, 潘宏刚, 文博, 耿世聪, 王国峰, 傅玉栋, 高宇, 崔长春, 姜鑫, 孙卓伦. 硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究[J]. 生态毒理学报, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002
Ma Shanshan, Zhao Yixiang, Yang Shuo, Pan Honggang, Wen Bo, Geng Shicong, Wang Guofeng, Fu Yudong, Gao Yu, Cui Changchun, Jiang Xin, Sun Zhuolun. Effects of Tissue Element Content and Oxidative Stress after Zebrafish (Danio rerio) Exposed to Selenium[J]. Asian journal of ecotoxicology, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002
Citation: Ma Shanshan, Zhao Yixiang, Yang Shuo, Pan Honggang, Wen Bo, Geng Shicong, Wang Guofeng, Fu Yudong, Gao Yu, Cui Changchun, Jiang Xin, Sun Zhuolun. Effects of Tissue Element Content and Oxidative Stress after Zebrafish (Danio rerio) Exposed to Selenium[J]. Asian journal of ecotoxicology, 2024, 19(5): 339-346. doi: 10.7524/AJE.1673-5897.20240313002

硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究

    通讯作者: 马珊珊,E-mail:mashanshan19880211@163.com;  耿世聪,E-mail:shiconggeng@163.com; 
    作者简介: 马珊珊(1988-),女,博士研究生,研究方向为生态毒理学,E-mail:mashanshan19880211@163.com
  • 1. 沈阳工程学院, 沈阳 110136;
  • 2. 中国科学院沈阳应用生态研究所, 沈阳 110016
基金项目:

辽宁省自然科学基金资助项目(2023-MSLH-228);沈阳工程学院大学生创新创业训练计划项目(D202404162148068688);沈阳市科学技术计划项目(240706)

摘要: 以斑马鱼为受试材料,研究了Se(Ⅳ)暴露对斑马鱼组织的元素含量及氧化胁迫的影响。试验分4组,分别为对照组,5 μg·L-1、50 μg·L-1和500 μg·L-1暴露组,处理21 d后,对斑马鱼各组织(脑、鳃、肝、肠、肌肉)中的Se、Al、Cr、Cu、Mg和Zn的含量进行测定,同时测定各组织中超氧化物歧化酶(SOD)活性、谷胱甘肽-S-转移酶(GST)活性、还原型谷胱甘肽(GSH)含量和脂质过氧化产物(MDA)含量。结果显示,与对照组相比,硒处理组斑马鱼各组织呈现不同程度的硒累积,肝组织中硒累积量最高,且元素Cu和Zn显著增加。肝组织中SOD和GSH水平呈现先升高后降低的趋势,500 μg·L-1处理组肝组织中GST活性显著降低56.5%,而肝和鳃组织中MDA分别显著升高3.1倍和1.6倍。研究结果表明硒暴露破坏斑马鱼组织Cu、Zn元素平衡,引起脂质过氧化,诱导斑马鱼肝鳃组织发生氧化胁迫,试验为进一步从元素平衡和氧化胁迫角度研究硒暴露对水生生物的毒性效应奠定了基础。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回