耐盐苯酚降解菌Staphylococcus sp.的分离及降解特性
Isolation and biodegradation characteristics of a halophilic phenol-degrading strain Staphylococcus sp.
-
摘要: 从巴丹吉林沙漠盐湖表层沉积物中筛选到一株高效耐盐苯酚降解菌CL.测定了菌株CL的生理生化指标、16S rRNA基因序列,通过动力学模型探究了该菌株的生长和苯酚降解特性,同时考察了固定化对其耐受及降解苯酚能力的影响.结果表明,菌株CL属于葡萄球菌属(Staphylococcus sp.),在温度30℃、pH 7.0-8.0、盐度0-10%和苯酚浓度100-200 mg·L-1条件下,该菌株能高效降解苯酚,其降解率均在85%以上.菌株CL对不同浓度苯酚的降解符合Haldane模型,其最大比降解速率和抑制常数分别为0.32 h-1和351.70 mg·L-1,同时该菌株在不同盐度下对苯酚的降解符合Ghose and Tyagi模型.固定化可以明显增加菌株CL对苯酚的降解和耐受能力.菌株CL在高盐环境下能够高效降解苯酚,具有生物处理高盐含酚废水的潜力.
-
关键词:
- Staphylococcus sp. /
- 苯酚 /
- 耐盐菌 /
- 动力学 /
- 固定化
Abstract: The haloph ilic and high-efficient phenol-degrading strain CL was screened from the surface sediments of Saline Lake in Badain Jilin desert. Physiological-biochemical indicators and 16S rRNA gene sequence were detected and kinetics models were used to investigate the characteristics of growth and phenol degradation, and the effect of immobilization on the phenol tolerance and degradation of strain CL. The results showed that the strain CL was identified as Staphylococcus sp., and it could efficiently degrade phenol (degradation rate of above 85%) with incubation at 30℃, pH 7.0-8.0, salinity 0-10% and phenol concentration 100-200 mg·L-1. The phenol degradation with different concentration by strain CL followed Haldane model (maximum specific degradation rate=0.32 h-1, inhibition constant=351.70 mg·L-1). The phenol degradation with different salinity by strain CL followed Ghose and Tyagi model. The immobilization could significantly increase the phenol tolerance and degradation ability of strain CL. The halophilic and high-efficient phenol-degrading characteristics of strain CL provide a new potential to be utilized in the high-salt phenolic wastewater.-
Key words:
- Staphylococcus sp. /
- phenol /
- halophile /
- kinetics /
- immobilization
-
-
[1] MAO Z, YU C, XIN L. Enhancement of phenol biodegradation by Pseudochrobactrum sp. through ultraviolet-induced mutation[J]. Molecular Sciences, 2015, 16:7320-7333. [2] ACOSTA C A, PASQUALI C E, PANIAGUA G, et al. Evaluation of total phenol pollution in water of San Martin Canal from Santiago del Estero, Argentina[J]. Environment Pollution, 2018, 236:265-272. [3] PRAVEEN P, LOH K C. Phenolic wastewater treatment through extractive recovery coupled with biodegradation in a two-phase partitioning membrane bioreactor[J]. Chemosphere, 2015, 141:176-182. [4] 王涵, 李瑾, 程华丽, 等. 固定化多酚氧化酶对水中苯酚和氯酚的去除[J]. 环境化学, 2015, 34(3):571-577. WANG H, LI J, CHENG H L, et al. Removal of phenol and chlorophenols in aqueous solutions by immobilizated polyphenol oxidase[J]. Environmental Chemistry, 2015, 34(3):571-577(in Chinese).
[5] 吴正勇, 赵高峰, 周怀东, 等. 三峡库区丰水期表层水中酚类的分布特征及潜在风险[J]. 环境科学, 2012, 33(8):2580-2585. WU ZY, ZHAO G F, ZHOU H D, et al. Distribution characteristics and potential risks of phenols in the rainy season surface water from Three Gorges Reservoir[J]. Environmental Science, 2012, 33(8):2580-2585(in Chinese).
[6] 陈晓华, 魏刚, 刘思远, 等. 高效降酚菌株Ochrobactrum sp. CH10生长动力学和苯酚降解特性的研究[J]. 环境科学, 2012, 33(11):3956-3961. CHEN X H, WEI G, LIU S Y, et al. Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10[J]. Environmental Science, 2012, 33(11):3956-3961(in Chinese).
[7] ZHI Y L, XIAO J G, HUI L, et al. High-throughput screening for a moderately halophilic phenol degrading strain and its salt tolerance response[J]. Molecular Sciences, 2015, 16:11834-11848. [8] BASSAK B, BHUNIA B, DUTTA S, et al. Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5[J]. Environmental Science and Pollution Research, 2014, 21:1444-1454. [9] 曹军伟, 董纯明, 曹宏斌, 等. 焦化废水中酚降解菌及其降解基因的研究[J]. 环境科学, 2011, 32(2):560-566. CAO Y W, DONG C M, CAO H B, et al. Isolation of phenol-degrading bacteria from coking wastewater and their degradation gene[J]. Environmental Science, 2011, 32(2):560-566(in Chinese).
[10] EREQAT S I, ABDELKADER A A, NASEREDDIN A F, et al. Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine[J]. Environmental Science Health Part A, 2018, 53(1):39-45. [11] 蒙小俊, 张玉秀, 杜海迪, 等. Diaphorobacter P2菌株酚降解特性及其在焦化废水中的除酚作用[J]. 环境化学, 2014, 33(5):789-793. MENG Y X, ZHANG Y X, DU H D, et al. Characterization of phenol-degrading Diaphorobacter strain P2 and removing phenol in coking wastewater[J]. Environmental Chemistry, 2014, 33(5):789-793(in Chinese).
[12] TAHERI E, KHIADANI M H, AMIN M M, et al. Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation[J]. Bioresource Technology, 2012, 111:21-26. [13] 杨丹丹, 黎乾, 黄晶晶, 等. 岱山盐场可培养嗜盐菌的多样性及其产酶活性筛选[J]. 应用生态学报, 2012, 23(11):3103-3108. YANG D D, LI Q, HUANG J J, et al. Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(11):3103-3108(in Chinese).
[14] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. DONG X Z, CAI M Y. Handbook for systematic identification of common bacteria[M]. Beijing:Science Press, 2001(in Chinese). [15] EDWARDS U, ROGALL T, BLOCKER H, et al. Isolation and direct complete nucleotide determination of entire genes Characterization of a gene coding for 16S ribosomal RNA[J]. Nucleic Acids Research, 1989, 17(19):7843-7853. [16] 汪晶, 柯凤乔. 一株降解雌二醇的恶臭假单胞菌的分离鉴定及降解活性[J]. 环境化学, 2015, 34(4):814-816. WANG J, KE F Q. Isolation, identification and degradation activity of a Pseudomonas putida strain degrading estradiol[J]. Environmental Chemistry, 2015, 34(4):814-816(in Chinese).
[17] 于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3):1215-1220. YU C H, CHEN F, HU L N, et al. Selection of phenol degradation bacteria and characteristic of degradation kinetics[J]. Chinese Journal of Environmental Engineering, 2014, 8(3):1215-1220(in Chinese).
[18] WATANABE K, HINO S, ONODERA K, et al. Diversity in kinetics of bacterial phenol-oxygenating activity[J]. Journal of Fermentation and Bioengineering, 1996, 81(6):562-565. [19] ANDREW J F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnology Bioengineering, 1968, 10:707-723. [20] 邹小玲, 许柯, 丁丽丽, 等. NaCl和KCl对厌氧污泥抑制的动力学研究[J]. 化工环保, 2009, 29(5):394-397. ZOU X L, XU K, DING L L, et al. Kinetics of inhibiting action of NaCl and KCl on anaerobic sludge[J]. Environmental Protection Chemical Industry, 2009, 29(5):394-397(in Chinese).
[21] [22] GRACIOSO L H, VIEIRA P B, BALTAZAR M P G. Removal of phenolic compounds from raw industrial wastewater by Achromobacter sp. isolated from a hydrocarbon-contaminated area[J]. Water And Environment Journal, 2019:33(1):40-41. [23] KOBAYASHI F, DAIDAI M, SUZUKI N, et al. Degradation of phenol in seawater using a novel microorganism isolated from the intestine of Aplysiakurodai[J]. International Biodeterioration Biodegradation, 2007, 59:252-254. [24] 李晶, 饶婷, 李巍, 等. 恶臭假单胞菌(Pseudomonas putida LY1)共代谢降解苯酚和4-氯苯酚系统的降解动力学研究[J]. 环境科学学报, 2011, 31(10):2109-2116. LI J, RAO T, LI W, et al. Kinetic study on cometabolic biodegradation of phenol and 4-chlorophenol by Pseudomonas putida LY1[J]. Acta Scientiae Circumstantiae, 31(10):2109-2116(in Chinese).
[25] KUMARAN P, PARUCHURI Y L. Kinetics of phenol biotransformation[J]. Water Research, 1997, 31:11-22. [26] KUMAR A, KUMAR S, KUMAR S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 119[J]. Biochemical Engineering Journal, 2005, 22:151-159. [27] SINGH R K, KUMAR S, KUMAR S, et al. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869[J]. Biochemical Engineering Journal, 2008, 40:293-303. [28] 葛启隆, 岳秀萍, 王国英, 等. 好氧反硝化苯酚降解菌的分离鉴定及动力学[J]. 环境工程学报, 2014, 8(6):2605-2610. GE Q L, YUE X P, WANG G Y, et al. Isolation and identification of aerobic denitrifying phenol-degrading strain and its kinetic[J]. Chinese Journal of Environmental Engineering, 2014, 8(6):2605-2610(in Chinese).
[29] 李静, 李文英. 喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学, 2015, 36(4):1385-1391. LI J, LI W Y. Screening of a highly efficient quinoline-degrading strain and its enhanced biotreatment on coking waste water[J]. Environmental Science, 2015, 36(4):1385-1391(in Chinese).
[30] GAYATHRI K V, VASUDEVAN N. Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment[J]. Journal Bioremediation & Biodegradation, 2010, 1:104-109. [31] 王丽娟, 钱子雯, 沈海波, 等. 一株耐盐菌的分离及其降解特性[J]. 化工进展, 2017, 36(3):1047-1051. WANG L J, QIAN Z W, SHEN H B, et al. Separation and biodegradation characteristics of a halotolerant strain[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1047-1051(in Chinese).
[32] KARGI F, DINCER A R. Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisccontactor[J]. Enzyme and Microbial Technology, 1998, 22:427-433. [33] PEYTON B M, WILSON T, YONGE D R. Kinetics of phenol biodegradation in high salt solutions[J]. Water Reserch, 2002, 36:4811-4820. [34] QIAO L, WEN D H, WANG J L. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon[J]. Bioresource Technology, 2010, 101:5229-5234. [35] 刘和, 王晓云, 陈英旭. 固定化微生物技术处理含酚废水[J]. 中国给水排水, 2003, 19(5):53-55. LIU H, WANG X Y, CHEN Y X. Immobilized microorganism technology for treatment of phenolic wastewater[J]. China Water and Wasterwater, 2003, 19(5):53-55(in Chinese).
-

计量
- 文章访问数: 2920
- HTML全文浏览数: 2920
- PDF下载数: 77
- 施引文献: 0