金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型

王天勤, 郭丰林, 孟伽娜, 张子琦, 李建青, 孙浩, 徐文龙, 张洪武, 黄杨, 李斐. 金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型[J]. 生态毒理学报, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001
引用本文: 王天勤, 郭丰林, 孟伽娜, 张子琦, 李建青, 孙浩, 徐文龙, 张洪武, 黄杨, 李斐. 金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型[J]. 生态毒理学报, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001
WANG Tianqin, GUO Fenglin, MENG Jiana, ZHANG Ziqi, LI Jianqing, SUN Hao, XU Wenlong, ZHANG Hongwu, HUANG Yang, LI Fei. Machine Learning Models for Prediction of Toxicity in A549 Cells Induced by Metal Oxide Nanoparticles[J]. Asian journal of ecotoxicology, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001
Citation: WANG Tianqin, GUO Fenglin, MENG Jiana, ZHANG Ziqi, LI Jianqing, SUN Hao, XU Wenlong, ZHANG Hongwu, HUANG Yang, LI Fei. Machine Learning Models for Prediction of Toxicity in A549 Cells Induced by Metal Oxide Nanoparticles[J]. Asian journal of ecotoxicology, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001

金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型

    作者简介: 王天勤(2000—),男,硕士研究生,研究方向为计算毒理学,E-mail:1wangtianqin1@gmail.com
    通讯作者: 黄杨,E-mail:huangyang@ldu.edu.cn;  李斐,E-mail:fli@yic.ac.cn
  • 基金项目:

    国家自然科学基金青年项目(22406080)

    国家自然科学基金面上项目(22376215,U22A20618)

    山东省自然科学基金项目(ZR2023MD071)

    泰山学者工程(tsqn202312275)

    山东省高等学校优秀青年创新团队项目(2023KJ213)

  • 中图分类号: X171.5

Machine Learning Models for Prediction of Toxicity in A549 Cells Induced by Metal Oxide Nanoparticles

    Corresponding authors: HUANG Yang ;  LI Fei
  • Fund Project:
  • 摘要: 纳米金属氧化物(MOx)易通过呼吸进入肺部,诱发肺细胞毒性,进而导致肺部多种疾病。仅通过实验方法评估毒性面临效率低、成本高和伦理问题等局限性。对MOx的肺部细胞毒性进行全面评估,有利于防治新污染物的健康危害。为了充分利用现有毒性数据,本研究开发了肺细胞(A549细胞)毒性高通量预测模型,对传统毒性实验进行了补充。通过文献挖掘,构建了MOx诱导肺细胞毒性数据集,涵盖9种MOx在8种不同浓度下产生的72个毒性数据点,以及材料密度、粒径等29种性质参数。使用合成少数类过采样技术(SMOTE)算法处理不平衡数据,构建了基于多种机器学习算法的预测模型,表现最优的模型在训练集十折交叉验证和测试集外部验证中准确率分别超过0.90和0.85。基于Shapley可加性特征解释方法(SHAP),识别了暴露浓度、暴露时间以及材料分散指数等影响毒性的5个关键参数,阐明了毒性机理。基于相似性网络图对建模数据的代表性及模型应用域进行了表征。本研究构建的机器学习模型实现了MOx毒性的高通量准确预测,可以作为纳米材料毒性评估和安全设计的有力工具。
  • 加载中
  • MATIJEVIć E. Fine particles in medicine and pharmacy[M]. New York:Springer, 2012:57-100.
    CHAVALI M S, NIKOLOVA M P. Metal oxide nanoparticles and their applications in nanotechnology[J]. SN applied sciences, 2019, 1(6):607.
    NAVROTSKY A. Thermochemistry of nanomaterials[J]. Reviews in mineralogy and geochemistry, 2001, 44(1):73-103.
    CAI X, LIU X, JIANG J, et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments[J]. Small, 2020, 16(36):1907663.
    HOLDER A L, GOTH-GOLDSTEIN R, LUCAS D, et al. Particle-induced artifacts in the MTT and LDH viability assays[J]. Chemical research in toxicology, 2012, 25(9):1885-1892.
    ANDREESCU S, ORNATSKA M, ERLICHMAN J S, et al. Biomedical applications of metal oxide nanoparticles[J]. Fine particles in medicine and pharmacy, 2012, 2012:57-100.
    YOUNIS S A, EL-FAWAL E M, SERP P. Nano-wastes and the environment:potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies[J]. Handbook of environmental materials management, 2018:1-72.
    AHAMED M, AKHTAR M J, ALHADLAQ H A, et al. Assessment of the lung toxicity of copper oxide nanoparticles:current status[J]. Nanomedicine, 2015, 10(15):2365-2377.
    YAN X, SEDYKH A, WANG W, et al. In silico profiling nanoparticles:predictive nanomodeling using universal nanodescriptors and various machine learning approaches[J]. Nanoscale, 2019, 11(17):8352-8362.
    GRASSIAN V H, O'SHAUGHNESSY P T, ADAMCAKOVA-DODD A, et al. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm[J]. Environmental health perspectives, 2007, 115(3):397-402.
    ERLICHMAN J S, LEITER J C. Complexity of the nano-bio interface and the tortuous path of metal oxides in biological systems[J]. Antioxidants, 2021, 10(4):547.
    GOLBAMAKI A, GOLBAMAKI N, SIZOCHENKO N, et al. Genotoxicity induced by metal oxide nanoparticles:a weight of evidence study and effect of particle surface and electronic properties[J]. Nanotoxicology, 2018, 12(10):1113-1129.
    SHIN H K, KIM K Y, PARK J W, et al. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model[J]. SAR and QSAR in environmental research, 2017, 28(11):875-888.
    PAL A K, BELLO D, COHEN J, et al. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials[J]. Nanotoxicology, 2015, 9(7):871-885.
    LIU R, LIU H H, JI Z, et al. Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model[J]. ACS nano, 2015, 9(9):9303-9313.
    黄杨,吴雨宣,伍天翔,等.计算毒理学工具解码纳米毒性评估和毒性机理[J].环境化学, 2024.(2024-04-28). https://kns.cnki.net/kcms2

    /article/abstract?v=DMKM_QUxZ7BCTazGKhED58GWZZ_5pAF31pxzZQNdLP6w-UBOiyRkjd3rXgGO4cV4BrVbS6ZmQPa5iin0CBdOTtM-YI7MB9pPlphMHz68zKIlGWZuMEzp1F9cHh_OXRktHajEmHgz7FBhMBpC47UYrL_xDxysDwrSZFlEN9UG-93oTLQQ04V3_yU8Nd0Z5oZoKWR&uniplatform=NZKPT&language=CHS. HUANG Y, WU Y X, WU T X, et al. In silico tools in computational toxicology decode risk assessment and mechanism interpretation of nanomaterials[J]. Environmental chemistry, 2024.(2024-04-28). https://kns.cnki.net/kcms2/article/abstract?v=DMKM_QUxZ7BCTaz-GKhED58GWZZ_5pAF31pxzZQNdLP6wUBOiyRkjd3r-XgGO4cV4BrVbS6ZmQPa5iin0CBdOTtMYI7MB9pPlp-hMHz68zKIlGWZuMEzp1F9cHh_OXRktHajEmHgz7FB-hMBpC47UYrL_xDxysDwrSZFlEN9UG93oTLQQ04V3_yU8Nd0Z5oZoKWR&uniplatform=NZKPT&language=CHS.

    HALAPPANAVAR S, NYMARK P, KRUG H F, et al. Non-animal strategies for toxicity assessment of nanoscale materials:role of adverse outcome pathways in the selection of endpoints[J]. Small, 2021, 17(15):2007628.
    WANG Z, CHEN J, HONG H. Developing QSAR models with defined applicability domains on PPARγ binding affinity using large data sets and machine learning algorithms[J]. Environmental science&technology, 2021, 55(10):6857-6866.
    ZHANG H, JI Z, XIA T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation[J]. ACS nano, 2012, 6(5):4349-4368.
    YU F, WEI C, DENG P, et al. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles[J]. Science advances, 2021, 7(22):4130.
    徐淑君,李瑞香,伍天翔.工程纳米颗粒生物负荷量的机器学习预测模型[J].环境化学, 2024, 43(10):3406-3415.
    AHMADI S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria[J]. Chemosphere, 2020, 242:125192.
    SHARMA M, NIKOTA J, HALAPPANAVAR S, et al. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs)[J]. Archives of toxicology, 2016, 90(7):1605-1622.
    SHATKIN J, ONG K. Alternative testing strategies for nanomaterials:state of the science and considerations for risk analysis[J]. Risk analysis, 2016, 36(8):1564-1580.
    AREECHEEWAKUL S, ADAMCAKOVA-DODD A, GIVENS B E, et al. Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies[J]. NanoImpact, 2020, 18:100214.
    ZAKHAROV A V, PEACH M L, SITZMANN M, et al. QSAR modeling of imbalanced high-throughput screening data in PubChem[J]. Journal of chemical information and modeling, 2014, 54(3):705-712.
    IDAKWO G, THANGAPANDIAN S, LUTTRELL J, et al. Structure-activity relationship-based chemical classification of highly imbalanced Tox21 datasets[J]. Journal of cheminformatics, 2020, 12(1):1-19.
    CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16:321-357.
    ZHU T, LIN Y, LIU Y. Synthetic minority oversampling technique for multiclass imbalance problems[J]. Pattern recognition, 2017, 72:327-340.
    HOSMER JR D W, LEMESHOW S, STURDIVANT R X. Applied logistic regression[M]//Wiley Series in probability and statistics. John Wiley&Sons, 2013:153-225.
    ROY K, KAR S, AMBURE P. On a simple approach for determining applicability domain of QSAR models[J]. Chemometrics and intelligent laboratory systems, 2015, 145:22-29.
    LI M, SUN H, HUANG Y, et al. Shapley value:from cooperative game to explainable artificial intelligence[J]. Autonomous intelligent systems, 2024, 4(1):2-14.
    DE ALMEIDA M S, SUSNIK E, DRASLER B, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine[J]. Chemical society reviews, 2021, 50(9):5397-5434.
    KHEDER W, SOUMYA S, SAMSUDIN A. Impact of titanium dioxide particle size on macrophage production of intracellular reactive oxygen species[J]. Archives of oral biology, 2021, 127:105133.
    KUMARI M, RAJAK S, SINGH S P, et al. Repeated oral dose toxicity of iron oxide nanoparticles:biochemical and histopathological alterations in different tissues of rats[J]. Journal of nanoscience and nanotechnology, 2012, 12(3):2149-2159.
    PETOSA A R, JAISI D P, QUEVEDO I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments:role of physicochemical interactions[J]. Environmental science&technology, 2010, 44(17):6532-6549.
    GEVARIYA D, PRIYA L, MEHTA S, et al. Bio-functional mesoporous silica nanoparticles as nano-structured carriers in cancer theranostic review on recent advancements[J]. Current drug targets, 2023, 24(12):934-944.
    肖九逸.具有降低毒性的介孔二氧化硅纳米棒用于精确癌症治疗[J].科学, 2017, 69(6):21-29.

    XIAO J Y. Mesoporous silica nanorods with reduced toxicity for precise cancer treatment[J]. Science, 2017, 69(6):21.

    HUANG Y, LI X, CAO J, et al. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells:machine learning boosts nano-safety assessment[J]. Environment international, 2022, 164:107258.
  • 加载中
计量
  • 文章访问数:  335
  • HTML全文浏览数:  335
  • PDF下载数:  94
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-09-04
王天勤, 郭丰林, 孟伽娜, 张子琦, 李建青, 孙浩, 徐文龙, 张洪武, 黄杨, 李斐. 金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型[J]. 生态毒理学报, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001
引用本文: 王天勤, 郭丰林, 孟伽娜, 张子琦, 李建青, 孙浩, 徐文龙, 张洪武, 黄杨, 李斐. 金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型[J]. 生态毒理学报, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001
WANG Tianqin, GUO Fenglin, MENG Jiana, ZHANG Ziqi, LI Jianqing, SUN Hao, XU Wenlong, ZHANG Hongwu, HUANG Yang, LI Fei. Machine Learning Models for Prediction of Toxicity in A549 Cells Induced by Metal Oxide Nanoparticles[J]. Asian journal of ecotoxicology, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001
Citation: WANG Tianqin, GUO Fenglin, MENG Jiana, ZHANG Ziqi, LI Jianqing, SUN Hao, XU Wenlong, ZHANG Hongwu, HUANG Yang, LI Fei. Machine Learning Models for Prediction of Toxicity in A549 Cells Induced by Metal Oxide Nanoparticles[J]. Asian journal of ecotoxicology, 2025, 20(1): 23-35. doi: 10.7524/AJE.1673-5897.20240904001

金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型

    通讯作者: 黄杨,E-mail:huangyang@ldu.edu.cn;  李斐,E-mail:fli@yic.ac.cn
    作者简介: 王天勤(2000—),男,硕士研究生,研究方向为计算毒理学,E-mail:1wangtianqin1@gmail.com
  • 1. 鲁东大学化学与材料科学学院, 烟台 264025;
  • 2. 中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所), 山东省海岸带环境过程重点实验室, 中国科学院烟台海岸带研究所, 烟台 264003
基金项目:

国家自然科学基金青年项目(22406080)

国家自然科学基金面上项目(22376215,U22A20618)

山东省自然科学基金项目(ZR2023MD071)

泰山学者工程(tsqn202312275)

山东省高等学校优秀青年创新团队项目(2023KJ213)

摘要: 纳米金属氧化物(MOx)易通过呼吸进入肺部,诱发肺细胞毒性,进而导致肺部多种疾病。仅通过实验方法评估毒性面临效率低、成本高和伦理问题等局限性。对MOx的肺部细胞毒性进行全面评估,有利于防治新污染物的健康危害。为了充分利用现有毒性数据,本研究开发了肺细胞(A549细胞)毒性高通量预测模型,对传统毒性实验进行了补充。通过文献挖掘,构建了MOx诱导肺细胞毒性数据集,涵盖9种MOx在8种不同浓度下产生的72个毒性数据点,以及材料密度、粒径等29种性质参数。使用合成少数类过采样技术(SMOTE)算法处理不平衡数据,构建了基于多种机器学习算法的预测模型,表现最优的模型在训练集十折交叉验证和测试集外部验证中准确率分别超过0.90和0.85。基于Shapley可加性特征解释方法(SHAP),识别了暴露浓度、暴露时间以及材料分散指数等影响毒性的5个关键参数,阐明了毒性机理。基于相似性网络图对建模数据的代表性及模型应用域进行了表征。本研究构建的机器学习模型实现了MOx毒性的高通量准确预测,可以作为纳米材料毒性评估和安全设计的有力工具。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回