野生鸟类介导抗生素抗性基因传播的研究进展

杨婧, 王雪妍, 徐泽坤, 张轩. 野生鸟类介导抗生素抗性基因传播的研究进展[J]. 生态毒理学报, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001
引用本文: 杨婧, 王雪妍, 徐泽坤, 张轩. 野生鸟类介导抗生素抗性基因传播的研究进展[J]. 生态毒理学报, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001
Yang Jing, Wang Xueyan, Xu Zekun, Zhang Xuan. Advances in Wild Birds Mediating Spread of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001
Citation: Yang Jing, Wang Xueyan, Xu Zekun, Zhang Xuan. Advances in Wild Birds Mediating Spread of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001

野生鸟类介导抗生素抗性基因传播的研究进展

    作者简介: 杨婧(1988-),女,博士,讲师,研究方向为生态毒理学,E-mail:yangjing1@sust.edu.cn
    通讯作者: 杨婧,E-mail: yangjing1@sust.edu.cn; 
  • 基金项目:

    国家自然科学基金资助项目(32000295);陕西省教育厅专项科研计划项目(21JK0546)

  • 中图分类号: X171.5

Advances in Wild Birds Mediating Spread of Antibiotic Resistance Genes

    Corresponding author: Yang Jing, yangjing1@sust.edu.cn
  • Fund Project:
  • 摘要: 细菌的抗生素耐药是重大的公共卫生问题,抗生素抗性基因(antibiotic resistance genes, ARGs)可能会在人类、动物和环境微生物组之间水平转移,使其相互依存的生态系统与公共卫生之间存在潜在关联性。鸟类是地球上种类繁多的物种之一,它们的跨距离传播可能会加速耐药基因在全球范围内的扩展,带来一定的健康风险。本文综述了野生鸟类介导抗生素抗性基因在生态环境中的主动传播,提出其作为传播媒介的重要性,并分别阐述了城市留鸟和候鸟对抗生素抗性基因的传播作用,着重突出了候鸟跨地区传播的作用,总结出野生鸟类介导抗生素抗性基因的传播是尤为重要的研究方向。
  • 加载中
  • Lin Z B, Yuan T, Zhou L, et al. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment[J]. Environmental Geochemistry and Health, 2021, 43(5): 1741-1758
    Wu X F, Wei Y S, Zheng J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10): 5924-5931
    Jian Z H, Zeng L, Xu T J, et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control[J]. Journal of Basic Microbiology, 2021, 61(12): 1049-1070
    Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in Northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450
    Tao R, Ying G G, Su H C, et al. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl Rivers in South China[J]. Environmental Pollution, 2010, 158(6): 2101-2109
    Prum R O, Berv J S, Dornburg A, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing[J]. Nature, 2015, 526(7574): 569-573
    Viana D S, Santamaría L, Figuerola J. Migratory birds as global dispersal vectors[J]. Trends in Ecology & Evolution, 2016, 31(10): 763-775
    Laviad-Shitrit S, Izhaki I, Arakawa E, et al. Wild waterfowl as potential vectors of Vibrio cholerae and Aeromonas species[J]. Tropical Medicine & International Health, 2018, 23(7): 758-764
    Xiang X J, Zhang F L, Fu R, et al. Significant differences in bacterial and potentially pathogenic communities between sympatric hooded crane and greater white-fronted goose[J]. Frontiers in Microbiology, 2019, 10: 163
    徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学, 2010, 29(2): 169-178

    Xu B J, Luo Y, Zhou Q X, et al. Sources, dissemination, and ecological risks of antibiotic resistances genes (ARGs) in the environment[J]. Environmental Chemistry, 2010, 29(2): 169-178(in Chinese)

    Hu Y F, Yang X, Qin J J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4: 2151
    周俊雄, 马荣琴, 李冬松, 等. 家养禽类肠道可培养细菌抗生素抗性的种类、数量和分布[J]. 福建农林大学学报(自然科学版), 2016, 45(1): 56-64 Zhou J X, Ma R Q, Li D S, et al. Diversity and distribution of antibiotic resistance for gut culturable bacteria from domestic poultry[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(1): 56-64(in Chinese)
    Gilliver M A, Bennett M, Begon M, et al. Antibiotic resistance found in wild rodents[J]. Nature, 1999, 401: 233-234
    Marcelino V R, Wille M, Hurt A C, et al. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes[J]. BMC Biology, 2019, 17(1): 31
    Luo Y, Tan L, Zhang H H, et al. Characteristics of wild bird resistomes and dissemination of antibiotic resistance genes in interconnected bird-habitat systems revealed by similarity of blaTEM polymorphic sequences[J]. Environmental Science & Technology, 2022, 56(21): 15084-15095
    付佳伦. 细菌耐药基因在斑马鱼体内定植、转移规律及机制研究[D]. 北京: 中国人民解放军军事医学科学院, 2017: 4-7 Fu J L. Study on the regularity and mechanism of colonization and transfer of bacterial drug resistance genes in zebrafish[D]. Beijing: Chinese People's Liberation Army Academy of Military Medical Sciences, 2017: 4

    -7(in Chinese)

    刘倩, 宋文涛, 樊国印, 等. 高通量测序在鸟类肠道微生物中的研究进展[J]. 中国人兽共患病学报, 2020, 36(12): 1025-1028

    , 1043 Liu Q, Song W T, Fan G Y, et al. Recent advances in understanding of the avian gut microbiome via high-throughput sequencing[J]. Chinese Journal of Zoonoses, 2020, 36(12): 1025-1028, 1043(in Chinese)

    Frieri M, Kumar K, Boutin A. Antibiotic resistance[J]. Journal of Infection and Public Health, 2017, 10(4): 369-378
    Atterby C, Ramey A M, Hall G G, et al. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments[J]. Infection Ecology & Epidemiology, 2016, 6: 32334
    Rose J M, Gast R J, Bogomolni A, et al. Occurrence and patterns of antibiotic resistance in vertebrates off the Northeastern United States coast[J]. FEMS Microbiology Ecology, 2009, 67(3): 421-431
    Dobbin G, Hariharan H, Daoust P Y, et al. Bacterial flora of free-living double-crested cormorant (Phalacrocorax auritus) chicks on Prince Edward Island, Canada, with reference to enteric bacteria and antibiotic resistance[J]. Comparative Immunology, Microbiology and Infectious Diseases, 2005, 28(1): 71-82
    Tsubokura M, Matsumoto A, Otsuki K, et al. Drug resistance and conjugative R plasmids in Escherichia coli strains isolated from migratory waterfowl[J]. Journal of Wildlife Diseases, 1995, 31(3): 352-357
    Sacristán C, Esperón F, Herrera-León S, et al. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain[J]. Avian Pathology, 2014, 43(2): 172-175
    Smith H G, Bean D C, Clarke R H, et al. Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcus spp. and Salmonella sp. in 12 species of Australian shorebirds and terns[J]. Zoonoses and Public Health, 2022, 69(6): 615-624
    Atterby C, Börjesson S, Ny S, et al. ESBL-producing Escherichia coli in Swedish gull: A case of environmental pollution from humans?[J]. PLoS One, 2017, 12(12): e0190380
    方新元, 王承, 蔡扩军, 等. 畜禽产品致病菌污染的危害, 现状及对策[J]. 中国畜禽种业, 2019, 15(3): 30-31

    Fang X Y, Wang C, Cai K J, et al. Hazards of pathogenic bacterial contamination of livestock and poultry products, currentsituation and countermeasures[J]. The Chinese Livestock and Poultry Breeding, 2019, 15(3): 30-31(in Chinese)

    郑晓丽. 鸡大肠杆菌病的防治措施研究[J]. 吉林畜牧兽医, 2022, 43(1): 67, 69

    Zheng X L. Study on control measures of chicken colibacillosis[J]. Jilin Animal Husbandry and Veterinary Medicine, 2022, 43(1): 67, 69(in Chinese)

    Kim K H, Lim H S, Lee J W, et al. Antimicrobial resistance of Escherichia coli isolated from wild birds in Daegu[J]. Korean Journal of Veterinary Service, 2021, 44(4): 209-216
    Dolejska M, Cizek A, Literak I. High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from black-headed gulls in the Czech Republic[J]. Journal of Applied Microbiology, 2007, 103(1): 11-19
    Borges C A, Beraldo L G, Maluta R P, et al. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital[J]. Avian Pathology, 2017, 46(1): 76-83
    Islam M S, Sobur M A, Rahman S, et al. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV genes among extended-spectrum beta-lactamase-producing Escherichia coli isolated from migratory birds travelling to Bangladesh[J]. Microbial Ecology, 2022, 83(4): 942-950
    Diren Sigirci B, Celik B, Ba 瘙塂 aran Kahraman B, et al. Tetracycline resistance of Enterobacteriaceae isolated from feces of synanthropic birds[J]. Journal of Exotic Pet Medicine, 2019, 28: 13-18
    Blyton M D, Pi H F, Vangchhia B, et al. Genetic structure and antimicrobial resistance of Escherichia coli and cryptic clades in birds with diverse human associations[J]. Applied and Environmental Microbiology, 2015, 81(15): 5123-5133
    Farooq S, Hussain I, Mir M A, et al. Isolation of atypical enteropathogenic Escherichia coli and Shiga toxin 1 and 2f-producing Escherichia coli from avian species in India[J]. Letters in Applied Microbiology, 2009, 48(6): 692-697
    Foster G, Evans J, Knight H I, et al. Analysis of feces samples collected from a wild-bird garden feeding station in Scotland for the presence of verocytotoxin-producing Escherichia coli O157[J]. Applied and Environmental Microbiology, 2006, 72(3): 2265-2267
    Blanco-Peña K, Esperón F, Torres-Mejía A M, et al. Antimicrobial resistance genes in pigeons from public parks in Costa Rica[J]. Zoonoses and Public Health, 2017, 64(7): e23-e30
    Liakopoulos A, Olsen B, Geurts Y, et al. Molecular characterization of extended-spectrum-cephalosporin-resistant Enterobacteriaceae from wild kelp gulls in South America[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(11): 6924-6927
    Stedt J, Bonnedahl J, Hernandez J, et al. Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe[J]. Acta Veterinaria Scandinavica, 2015, 57: 74
    Checcucci A, Trevisi P, Luise D, et al. Exploring the animal waste resistome: The spread of antimicrobial resistance genes through the use of livestock manure[J]. Frontiers in Microbiology, 2020, 11: 1416
    Xue J J, Wu J Q, Hu Y R, et al. Occurrence of heavy metals, antibiotics, and antibiotic resistance genes in different kinds of land-applied manure in China[J]. Environmental Science and Pollution Research International, 2021, 28(29): 40011-40021
    Zalewska M, Błażejewska A, Czapko A, et al. Antibiotics and antibiotic resistance genes in animal manure: Consequences of its application in agriculture[J]. Frontiers in Microbiology, 2021, 12: 610656
    Zhao H R, Sun R N, Yu P F, et al. High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces[J]. Environmental Pollution, 2020, 266(Pt 2): 115200
    Zhao Y, Su J Q, An X L, et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut[J]. The Science of the Total Environment, 2018, 621: 1224-1232
    刘宇, 直俊强, 石奥, 等. 畜禽粪便中典型抗生素抗性基因的检测和分析[J]. 四川环境, 2021, 40(3): 12-18

    Liu Y, Zhi J Q, Shi A, et al. Detection and analysis of typical antibiotic resistance genes in animal manure[J]. Sichuan Environment, 2021, 40(3): 12-18(in Chinese)

    Zhang S, Li T, Hu J M, et al. Reforestation substantially changed the soil antibiotic resistome and its relationships with metal resistance genes, mobile genetic elements, and pathogens[J]. Journal of Environmental Management, 2023, 342: 118037
    Zhu T, Chen T, Cao Z, et al. Antibiotic resistance genes in layer farms and their correlation with environmental samples[J]. Poultry Science, 2021, 100(12): 101485
    龚小雅, 宋建宇, 吴凤芝. 我国不同利用方式土壤四环素类抗性基因积累的研究[J]. 农业环境科学学报, 2023, 42(1): 87-100

    Gong X Y, Song J Y, Wu F Z. Study on the accumulation of tetracycline resistance genes in soil with different utilization patterns in China[J]. Journal ofAgro-Environment Science, 2023, 42(1): 87-100(in Chinese)

    王娜, 杨晓洪, 郭欣妍, 等. 土壤中的磺胺类耐药菌及其相关抗性基因分析[C]// 中国毒理学会第六届全国毒理学大会论文摘要集. 广州: 中国毒理学会, 2013: 236-236
    吴楠, 乔敏, 朱永官. 猪场土壤中5种四环素抗性基因的检测和定量[J]. 生态毒理学报, 2009, 4(5): 705-710

    Wu N, Qiao M, Zhu Y G. Detection and quantification of five tetracycline resistance genes in pig farm soils[J]. Asian Journal of Ecotoxicology, 2009, 4(5): 705-710(in Chinese)

    邹世春, 李青, 贺竹梅. 禽畜养殖场土壤抗生素抗性基因污染的初步研究[J]. 中山大学学报(自然科学版), 2012, 51(6): 87-91 Zou S C, Li Q, He Z M. A preliminary study on the tetracycline resistance genes in the livestock soil, South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 87-91(in Chinese)
    Yang Y Y, Cao X H, Lin H, et al. Antibiotics and antibiotic resistance genes in sediment of Honghu Lake and East Dongting Lake, China[J]. Microbial Ecology, 2016, 72(4): 791-801
    Zhang Z Q, Peng H X, Zhang J, et al. Pollution characteristics of typical ARGs in the sediments of the sea area adjacent to the Yangtze Estuary, China[J]. Environmental Pollution, 2023, 316(Pt 1): 120470
    陈嘉瑜. 中国东海近海沉积物中抗生素抗性基因的分布及其传播扩散研究[D]. 上海: 上海师范大学, 2022: 27-44 Chen J Y. Distribution and spread of antibiotic resistance genes in sediments of the East China Sea in China[D]. Shanghai: Shanghai Normal University, 2022: 27

    -44(in Chinese)

    杜宏宇, 石伟, 张红, 等. 河套灌区沉积物中抗生素抗性基因的分布研究[J]. 环境科学学报, 2019, 39(4): 1257-1265

    Du H Y, Shi W, Zhang H, et al. Distribution of antibiotic resistance genes in sediments of Hetao Irrigation District[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1257-1265(in Chinese)

    叶映仪, 侯庆华, 蓝东和, 等. 湛江湾抗生素抗性基因的时空分布及其影响因素[J]. 大连海洋大学学报, 2023, 38(2): 291-301

    Ye Y Y, Hou Q H, Lan D H, et al. Spatial and temporal distribution of antibiotic resistance genes in Zhanjiang Bay and its influencing factors[J]. Journal of Dalian Ocean University, 2023, 38(2): 291-301(in Chinese)

    罗方园. 洪泽湖沉积物中四环素类和磺胺类抗生素及其抗性基因污染分析[D]. 南京: 南京农业大学, 2017: 18-24 Luo F Y. Analysis of tetracycline and sulfonamide antibiotics and their resistance gene pollution in the sediments of Hongze Lake[D]. Nanjing: Nanjing Agricultural University, 2017: 18

    -24(in Chinese)

    董天羽. 城市河流抗生素抗性基因污染特征及转化研究[D]. 邯郸: 河北工程大学, 2022: 24-28 Dong T Y. Study on pollution characteristics and transformation of antibiotic resistance genes in urban rivers[D]. Handan: Hebei University of Engineering, 2022: 24

    -28(in Chinese)

    Brown P C, Borowska E, Schwartz T, et al. Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments[J]. The Science of the Total Environment, 2019, 649: 1171-1178
    Reichert G, Hilgert S, Alexander J, et al. Determination of antibiotic resistance genes in a WWTP-impacted river in surface water, sediment, and biofilm: Influence of seasonality and water quality[J]. Science of the Total Environment, 2021, 768: 144526
    Herrig I, Fleischmann S, Regnery J, et al. Prevalence and seasonal dynamics of blaCTX-M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany[J]. PLoS One, 2020, 15(4): e0232289
    Jiang L, Hu X L, Xu T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. The Science of the Total Environment, 2013, 458-460: 267-272
    Lu Z H, Na G S, Gao H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities[J]. The Science of the Total Environment, 2015, 527-528: 429-438
    Tiirik K, Nõlvak H, Oopkaup K, et al. Characterization of the bacterioplankton community and its antibiotic resistance genes in the Baltic Sea[J]. Biotechnology and Applied Biochemistry, 2014, 61(1): 23-32
    Wang D N, Liu L, Qiu Z G, et al. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water[J]. Water Research, 2016, 92: 188-198
    Wu D L, Zhang M, He L X, et al. Contamination profile of antibiotic resistance genes in ground water in comparison with surface water[J]. The Science of the Total Environment, 2020, 715: 136975
    Xu Y, Wang X L, Tan L, et al. Metal impacts on the persistence and proliferation of β-lactam resistance genes in Xiangjiang River, China[J]. Environmental Science and Pollution Research International, 2019, 26(24): 25208-25217
    杨尚乐. 松花江哈尔滨段抗生素及抗性基因分布规律研究与解析[D]. 哈尔滨: 东北林业大学, 2021: 25-33 Yang S L. Study and analysis on the distribution of antibiotics and resistance genes in Harbin section of Songhua River[D]. Harbin: Northeast Forestry University, 2021: 25

    -33(in Chinese)

    Cao J, Hu Y F, Liu F, et al. Metagenomic analysis reveals the microbiome and resistome in migratory birds[J]. Microbiome, 2020, 8(1): 26
    王亚楠. 鸡、猪和人体肠道菌群耐药基因的多样性和播散规律研究[D]. 郑州: 河南农业大学, 2021: 22-30 Wang Y N. Study on diversity and spreading regularity of drug resistance genes in chicken, pig and human intestinal flora[D]. Zhengzhou: Henan Agricultural University, 2021: 22

    -30(in Chinese)

    邹威, 罗义, 周启星. 畜禽粪便中抗生素抗性基因(ARGs)污染问题及环境调控[J]. 农业环境科学学报, 2014, 33(12): 2281-2287

    Zou W, Luo Y, Zhou Q X. Pollution of antibiotic resistance genes (ARGs) in livestock and poultry manure and its environmental regulation[J]. Journal of Agro-Environment Science, 2014, 33(12): 2281-2287(in Chinese)

    García-Amado M A, Shin H, Sanz V, et al. Comparison of gizzard and intestinal microbiota of wild neotropical birds[J]. PLoS One, 2018, 13(3): e0194857
    韩秉君, 牟美睿, 杨凤霞, 等. 畜禽养殖环境中抗生素抗性基因污染与扩散研究进展[J]. 农业资源与环境学报, 2022, 39(3): 446-455

    Han B J, Mu M R, Yang F X, et al. Progress of antibiotic resistance gene contamination and diffusion in livestock and poultry farming environments[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 446-455(in Chinese)

    彭秋, 王卫中, 徐卫红. 重庆市畜禽粪便及菜田土壤中四环素类抗生素生态风险评价[J]. 环境科学, 2020, 41(10): 4757-4766

    Peng Q, Wang W Z, Xu W H. Ecological risk assessment of tetracycline antibiotics in livestock manure and vegetable soil of Chongqing[J]. Environmental Science, 2020, 41(10): 4757-4766(in Chinese)

    Ewbank A C, Esperón F, Sacristán C, et al. Seabirds as anthropization indicators in two different tropical biotopes: A One Health approach to the issue of antimicrobial resistance genes pollution in oceanic islands[J]. The Science of the Total Environment, 2021, 754: 142141
    Şahan Yapicier O, Hesna Kandir E, Öztürk D. Antimicrobial resistance of E. coli and Salmonella isolated from wild birds in a rehabilitation center in Turkey[J]. Archives of Razi Institute, 2022, 77(1): 257-267
    Lu J Y, Yang Y C, Wu Y C, et al. Escherichia coli carrying IncI2 plasmid-mediated mcr-1 genes in crested ibis (Nipponia nippon)[J]. Journal of Infection and Public Health, 2022, 15(5): 558-561
    Wang Y N, Liu F, Zhu B L, et al. Metagenomic data screening reveals the distribution of mobilized resistance genestet(X), mcr and carbapenemase in animals and humans[J]. The Journal of Infection, 2020, 80(1): 121-142
    Waksman S A, Woodruff H B. The soil as a source of microorganisms antagonistic to disease-producing bacteria[J]. Journal of Bacteriology, 1940, 40(4): 581-600
    Martinez J L, Baquero F. Mutation frequencies and antibiotic resistance[J]. Antimicrobial Agents and Chemotherapy, 2000, 44(7): 1771-1777
    Martínez J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887): 365-367
    罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 1499-1505

    Luo Y, Zhou Q X. Antibiotic resistance genes (ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae, 2008, 28(8): 1499-1505(in Chinese)

    王兰君. 施用粪肥设施菜地土壤中抗生素抗性基因赋存特征和扩散机制[D]. 泰安: 山东农业大学, 2021: 8 Wang L J. Occurrence characteristics and diffusion mechanism of antibiotic resistance genes in vegetable soil with manure application facilities[D].Taian: Shandong Agricultural University, 2021: 8(in Chinese)
    常弘, 关贯勋. 鸟类学[M]. 广州: 中山大学出版社, 1999: 191-193
    钱燕云. 污泥厌氧消化过程中抗生素抗性基因的行为特征研究[D]. 杭州: 浙江大学, 2015: 7-10 Qian Y Y. Behavioral characteristics of antibiotic resistance genes during anaerobic digestion of sludge[D]. Hangzhou: Zhejiang University, 2015: 7

    -10(in Chinese)

    李林云, 谭璐, 崔玉晓, 等. 饮用水中细菌耐药及其健康风险研究进展[J]. 生态毒理学报, 2018, 13(2): 1-12

    Li L Y, Tan L, Cui Y X, et al. Bacterial resistance and human health risk in drinking water[J]. Asian Journal of Ecotoxicology, 2018, 13(2): 1-12(in Chinese)

    Fraise A P. Biocide abuse and antimicrobial resistance: A cause for concern?[J]. The Journal of Antimicrobial Chemotherapy, 2002, 49(1): 11-12
    Jiao Y N, Chen H, Gao R X, et al. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems[J]. Chemosphere, 2017, 184: 53-61
    刘含雨. 水环境中典型污染物促进抗生素抗性基因水平转移机理研究[D]. 邯郸: 河北工程大学, 2019: 5-8 Liu H Y. Study on horizontal gene transfer mechanism of typical pollutants in water environment promoting antibiotic resistance[D]. Handan: Hebei University of Engineering, 2019: 5

    -8(in Chinese)

    王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展[J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172 Wang J L. Advances in technologies for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater[J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172(in Chinese)
    Wu J, Huang Y, Rao D W, et al. Evidence for environmental dissemination of antibiotic resistance mediated by wild birds[J]. Frontiers in Microbiology, 2018, 9: 745
    Oravcova V, Svec P, Literak I. Vancomycin-resistant enterococci with vanA and vanB genes in Australian gulls[J]. Environmental Microbiology Reports, 2017, 9(3): 316-318
    Zhang W H, Lu X Y, Chen S J, et al. Molecular epidemiology and population genomics of tet(X4), blaNDM or mcr-1 positive Escherichia coli from migratory birds in southeast coast of China[J]. Ecotoxicology and Environmental Safety, 2022, 244: 114032
    Navedo J G, Araya V, Verdugo C. Upraising a silent pollution: Antibiotic resistance at coastal environments and transference to long-distance migratory shorebirds[J]. Science of the Total Environment, 2021, 777: 146004
    Lin Y F, Dong X H, Sun R, et al. Migratory birds-one major source of environmental antibiotic resistance around Qinghai Lake, China[J]. The Science of the Total Environment, 2020, 739: 139758
    Tarabai H, Valcek A, Jamborova I, et al. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli from a black kite in Russia[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(9): e01266-e01219
    Hasan B, Melhus Å, Sandegren L, et al. The gull (Chroicocephalus brunnicephalus) as an environmental bioindicator and reservoir for antibiotic resistance on the coastlines of the Bay of Bengal[J]. Microbial Drug Resistance, 2014, 20(5): 466-471
    Literak I, Dolejska M, Janoszowska D, et al. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland[J]. Applied and Environmental Microbiology, 2010, 76(24): 8126-8134
    易灵娴, 刘艺云, 吴仁杰, 等. 质粒介导的黏菌素耐药基因mcr-1研究进展[J]. 遗传, 2017, 39(2): 110-126

    Yi L X, Liu Y Y, Wu R J, et al. Progress in the study of the plasmid-mediated mucin resistance genemcr-1[J]. Hereditas, 2017, 39(2): 110-126(in Chinese)

    Ruzauskas M, Vaskeviciute L. Detection of the mcr-1 gene in Escherichia coli prevalent in the migratory bird species Larus argentatus[J]. The Journal of Antimicrobial Chemotherapy, 2016, 71(8): 2333-2334
    Aeksiri N, Toanan W, Sawikan S, et al. First detection and genomic insight into mcr-1 encoding plasmid-mediated colistin-resistance gene in Escherichia coli ST101 isolated from the migratory bird species Hirundo rustica in Thailand[J]. Microbial Drug Resistance, 2019, 25(10): 1437-1442
    Liakopoulos A, Mevius D J, Olsen B, et al. The colistin resistance mcr-1 gene is going wild[J]. The Journal of Antimicrobial Chemotherapy, 2016, 71(8): 2335-2336
    Zhang Y, Kuang X, Liu J, et al. Identification of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli isolates from migratory birds in Guangdong, China[J]. Frontiers in Microbiology, 2021, 12: 755233
  • 加载中
计量
  • 文章访问数:  2394
  • HTML全文浏览数:  2394
  • PDF下载数:  185
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-18
杨婧, 王雪妍, 徐泽坤, 张轩. 野生鸟类介导抗生素抗性基因传播的研究进展[J]. 生态毒理学报, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001
引用本文: 杨婧, 王雪妍, 徐泽坤, 张轩. 野生鸟类介导抗生素抗性基因传播的研究进展[J]. 生态毒理学报, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001
Yang Jing, Wang Xueyan, Xu Zekun, Zhang Xuan. Advances in Wild Birds Mediating Spread of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001
Citation: Yang Jing, Wang Xueyan, Xu Zekun, Zhang Xuan. Advances in Wild Birds Mediating Spread of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 150-161. doi: 10.7524/AJE.1673-5897.20230918001

野生鸟类介导抗生素抗性基因传播的研究进展

    通讯作者: 杨婧,E-mail: yangjing1@sust.edu.cn; 
    作者简介: 杨婧(1988-),女,博士,讲师,研究方向为生态毒理学,E-mail:yangjing1@sust.edu.cn
  • 陕西科技大学, 西安 710021
基金项目:

国家自然科学基金资助项目(32000295);陕西省教育厅专项科研计划项目(21JK0546)

摘要: 细菌的抗生素耐药是重大的公共卫生问题,抗生素抗性基因(antibiotic resistance genes, ARGs)可能会在人类、动物和环境微生物组之间水平转移,使其相互依存的生态系统与公共卫生之间存在潜在关联性。鸟类是地球上种类繁多的物种之一,它们的跨距离传播可能会加速耐药基因在全球范围内的扩展,带来一定的健康风险。本文综述了野生鸟类介导抗生素抗性基因在生态环境中的主动传播,提出其作为传播媒介的重要性,并分别阐述了城市留鸟和候鸟对抗生素抗性基因的传播作用,着重突出了候鸟跨地区传播的作用,总结出野生鸟类介导抗生素抗性基因的传播是尤为重要的研究方向。

English Abstract

参考文献 (102)

返回顶部

目录

/

返回文章
返回