活性炭对水中微量酰胺咪嗪吸附规律

吕婧, 张立秋, 封莉. 活性炭对水中微量酰胺咪嗪吸附规律[J]. 环境工程学报, 2012, 6(10): 3529-3536.
引用本文: 吕婧, 张立秋, 封莉. 活性炭对水中微量酰胺咪嗪吸附规律[J]. 环境工程学报, 2012, 6(10): 3529-3536.
LV Jing, Zhang Liqiu, Feng Li. Adsorption rules of activated carbons for trace carbamazepine in water[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3529-3536.
Citation: LV Jing, Zhang Liqiu, Feng Li. Adsorption rules of activated carbons for trace carbamazepine in water[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3529-3536.

活性炭对水中微量酰胺咪嗪吸附规律

  • 基金项目:

    教育部博士点新教师基金(20090014120018)

    教育部新世纪优秀人才项目(NCEF-08-0732)

  • 中图分类号: TU991.25

Adsorption rules of activated carbons for trace carbamazepine in water

  • Fund Project:
  • 摘要: 选择3种商品活性炭(煤质炭MAC、杏壳炭XAC、椰壳炭YAC),从其对水中微量药物酰胺咪嗪(carbamazepine,CBZ)的吸附平衡、吸附等温式、吸附动力学和热力学等方面详细考察了不同种类活性炭对CBZ的吸附去除规律。实验结果表明,3种活性炭与CBZ接触反应10 h后均达到吸附平衡,对CBZ的平衡吸附量在8.3 mg/g左右;比较了Langmuir和Freundlich两种吸附等温式,发现Langmuir方程更适合描述3种活性炭对CBZ的吸附过程;计算表明3种活性炭的吸附过程均符合拟二级动力学方程,Weber-Morris方程的模拟结果则说明膜扩散和内扩散共同限制了3种活性炭对CBZ的吸附速率;3种活性炭的Ea值分别为29.87 kJ/mol(MAC)、36.02 kJ/mol(XAC)和38.86 kJ/mol(YAC),表明3种活性炭吸附CBZ时同时发生了物理吸附和化学吸附作用,且以化学吸附为主;20~40℃时3种活性炭的△G均为负值,说明3种活性炭对CBZ的吸附反应可以自发进行;MAC、XAC、YAC的△H值分别为-3.10、-3.05和-3.02 kJ/mol,负值表明吸附过程放热,上述△H值较小则说明温度对CBZ的吸附影响不大;3种活性炭吸附CBZ过程的△S值为0.94 J/(mol·K)(MAC)、2.24 J/(mol·K)(XAC)和2.97 J/(mol·K)(YAC),说明吸附过程熵值增加,在外界条件不改变的情况下该吸附过程不可逆,同时可以看出在3种活性炭中,CBZ分子更倾向于吸附在YAC上。
  • 加载中
  • [1] Sosiak A.,Hebben T.A preliminary survey of pharmaceuticals and endocrine disrupting compounds in treated municipal wastewaters and receiving rivers of Alberta.Edmonton:Alberta Environment,Environmental Monitoring and Evaluation Branch,2005
    [2] Ternes T.A.Occurrence of drugs in German sewage treatment plants and rivers.Water Research,1998,32(11):3245-3260
    [3] Drewes J.E.,Heberer T.,Reddersen K.Fate of pharmaceuticals during indirect potable reuse.Water Science and Technology,2002,46(3):73-80
    [4] Tauber R.Quantitative analysis of pharmaceuticals in drinking water from ten Canadian Cities.Enviro-Test Laboratories,Xenos Division,Ontario,Canada,2003
    [5] Stackelberg P.E.,Furlong E.T.,Meyer M.T.,et al.Persistence of pharmaceutical compounds and other organic wastewater conta minants in a conventional drinking-water-treatment plant.Science of the Total Environment,2004,329(1-3):99-113
    [6] Stackelberg P.E,Gibs J.,Furlong E.T.,et al.Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.Science of the Total Environment,2007,377(2-3):255-272
    [7] Heberer T.,Mechlinski A.,Fanck B.,et al.Field studies on the fate and transport of pharmaceutical residues in bank filtration.Ground Water Monit Remediat,2004,24(2):70-77
    [8] Togola A.,Budzinski H.Multi-residue analysis of pharmaceutical compounds in aqueous samples.Journal of Chromatography A,2008,1177(1):150-158
    [9] Weigel S.,Bester K.,Hühnerfuss H.New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic conta minants by gas chromatography-mass spectrometry.Journal of Chromatography A,2001,912(1):151-161
    [10] Eric Kristia Putra,Ramon Pranowo,Jaka Sunarso,et al.Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater:Mechanisms,isotherms and kinetics.Water Research,2009,43(9):2419-2430
    [11] Rivera-Utrilla J.,Prados-Joya G.,Sánchez-Polo M.,et al.Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.Journal of Hazardous Materials,2009,170(1):298-305
    [12] Navarrete Casas R.,García Rodriguez A.,Rey Bueno F.,et al.Interaction of xanthenes with activated carbonⅠ.Kinetics of the adsorption process.Applied Surface Science,2006,252(17):6022-6025
    [13] Mestre A.S.,Pinto M.L.,Pires J.,et al.Effect of solution pH on the removal of clofibric acid by cork-based activated carbons.Carbon,2010,48(4):972-980
    [14] Óna Y.,Akmil-Basar C.,Sarlcl-özdemir C.Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot:Kinetic,equilibrium and thermodynamic characterization.Journal of Hazardous Materials,2007,148(3):727-734
    [15] Paul Westerhoff,Yeo min Yoon,Shane Senyder,et al.Fate of endocrine-disruptor,pharmaceutical,and personal Care product chemicals during simulated drinking water treatment processes.Water Science and Technology,2005,39(17):6649-6663
    [16] Shane A.Snyder,Samer Adham,Adam M.Redding,et al.Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals.Desalination,2006,202(1-3):156-181
    [17] Yu Zirui,Sigrid Peldszus,Peter M.Huck.Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—Naproxen,carbamazepine and nonylphenol—on activated carbon.Water Research,2008,42(12):2873-2882
    [18] Zhang Yongjun,GeiBn Sven-Uwe,Gal Carmen.Carbamazepine and diclofenac:Removal in wastewater treatment plants and occurrence in water bodies.Chemosphere,2008,73(8):1151-1161
    [19] Hamdaoui O.,Naffrechoux E.Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon.Part II.Models with more than two parameters.Journal of Hazardous Materials,2007,147(1-2):401-411
    [20] Mikhail Borisover,Maggie Sela,Benny Chefetz.Enhancement effect of water associated with natural organic matter (NOM) on organic compound—NOM interactions:A case study with carbamazepine.Chemosphere,2011,82(10):1454-1460
    [21] Patryk Oleszczuk,Pan Bo,Xing Baoshan.Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes.Environment Science and Technology,2009,43(24):9167-9173
    [22] Ho Y.S.,McKay G.Pseudo-second order model for sorption processes.Process Biochem.,1999,34(5):451-465
    [23] Weber W.Jr,Morris J.C.Kinetics of adsorption on carbon from solution.Journal of Sanitary Engineering Division,Proceed American Society of Civil Engineers,1963,89(1):31-59
    [24] 刘大中,王锦.物理吸附与化学吸附.山东轻工业学院学报,1999,13(2):23-25 Liu Dazhong,Wang Jin.Physisorption and chemisorption.Journal of Shangdong Institute of Light Industry,1999,13(2):23-25(in Chinese)
    [25] Terzyk A.P.,Rychlicki G.,Wiertnia M.S.,et al.Effect of the carbon surface layer chemistry on benzene adsorption from the vapor phase and from dilute aqueous solutions.Langmuir,2005,21(26):12257-12267
    [26] Hulscher Th.E.M.,Cornelissen G.Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants—A review.Chemosphere,1996,32(4):609-626
  • 加载中
计量
  • 文章访问数:  2053
  • HTML全文浏览数:  1137
  • PDF下载数:  1078
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-07-16
  • 刊出日期:  2012-10-16
吕婧, 张立秋, 封莉. 活性炭对水中微量酰胺咪嗪吸附规律[J]. 环境工程学报, 2012, 6(10): 3529-3536.
引用本文: 吕婧, 张立秋, 封莉. 活性炭对水中微量酰胺咪嗪吸附规律[J]. 环境工程学报, 2012, 6(10): 3529-3536.
LV Jing, Zhang Liqiu, Feng Li. Adsorption rules of activated carbons for trace carbamazepine in water[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3529-3536.
Citation: LV Jing, Zhang Liqiu, Feng Li. Adsorption rules of activated carbons for trace carbamazepine in water[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3529-3536.

活性炭对水中微量酰胺咪嗪吸附规律

  • 1. 北京林业大学北京水体污染源控制技术重点实验室, 北京 100083
基金项目:

教育部博士点新教师基金(20090014120018)

教育部新世纪优秀人才项目(NCEF-08-0732)

摘要: 选择3种商品活性炭(煤质炭MAC、杏壳炭XAC、椰壳炭YAC),从其对水中微量药物酰胺咪嗪(carbamazepine,CBZ)的吸附平衡、吸附等温式、吸附动力学和热力学等方面详细考察了不同种类活性炭对CBZ的吸附去除规律。实验结果表明,3种活性炭与CBZ接触反应10 h后均达到吸附平衡,对CBZ的平衡吸附量在8.3 mg/g左右;比较了Langmuir和Freundlich两种吸附等温式,发现Langmuir方程更适合描述3种活性炭对CBZ的吸附过程;计算表明3种活性炭的吸附过程均符合拟二级动力学方程,Weber-Morris方程的模拟结果则说明膜扩散和内扩散共同限制了3种活性炭对CBZ的吸附速率;3种活性炭的Ea值分别为29.87 kJ/mol(MAC)、36.02 kJ/mol(XAC)和38.86 kJ/mol(YAC),表明3种活性炭吸附CBZ时同时发生了物理吸附和化学吸附作用,且以化学吸附为主;20~40℃时3种活性炭的△G均为负值,说明3种活性炭对CBZ的吸附反应可以自发进行;MAC、XAC、YAC的△H值分别为-3.10、-3.05和-3.02 kJ/mol,负值表明吸附过程放热,上述△H值较小则说明温度对CBZ的吸附影响不大;3种活性炭吸附CBZ过程的△S值为0.94 J/(mol·K)(MAC)、2.24 J/(mol·K)(XAC)和2.97 J/(mol·K)(YAC),说明吸附过程熵值增加,在外界条件不改变的情况下该吸附过程不可逆,同时可以看出在3种活性炭中,CBZ分子更倾向于吸附在YAC上。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回