改性甘蔗渣对Cu2+和Zn2+的吸附机理

齐亚凤, 何正艳, 余军霞, 池汝安. 改性甘蔗渣对Cu2+和Zn2+的吸附机理[J]. 环境工程学报, 2013, 7(2): 585-590.
引用本文: 齐亚凤, 何正艳, 余军霞, 池汝安. 改性甘蔗渣对Cu2+和Zn2+的吸附机理[J]. 环境工程学报, 2013, 7(2): 585-590.
Qi Yafeng, He Zhengyan, Yu Junxia, Chi Ruan. Adsorption mechanism for Cu2+ and Zn2+ by modified bagasse[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 585-590.
Citation: Qi Yafeng, He Zhengyan, Yu Junxia, Chi Ruan. Adsorption mechanism for Cu2+ and Zn2+ by modified bagasse[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 585-590.

改性甘蔗渣对Cu2+和Zn2+的吸附机理

  • 基金项目:

    教育部创新团队项目 (IRT0974)

    教育部科学技术研究重点项目 (211114)

    武汉市晨光计划(201150431098)

  • 中图分类号: X703

Adsorption mechanism for Cu2+ and Zn2+ by modified bagasse

  • Fund Project:
  • 摘要: 研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu2+和Zn2+的吸附性能,包括吸附动力学和吸附等温线。结果表明, 改性后的甘蔗渣对重金属离子Cu2+和Zn2+的吸附容量有显著提高,对Cu2+和Zn2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu2+的吸附量分别为60.21和33.45 mg/g,对Zn2+的吸附量分别是70.53和36.53 mg/g。两种改性甘蔗渣对两种金属离子的吸附在30 min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu2+和Zn2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。
  • 加载中
  • [1] 鲁栋梁, 夏璐. 重金属废水处理方法与进展. 化工技术与开发, 2008,37(12):32-35 Lu D. L., Xia L. Treatment method of heavy metal wastewater and its progress. Technology & Development of Chemical Industry, 2008,37(12):32-35(in Chinese)
    [2] 黄君涛, 熊帆, 谢伟立, 等. 吸附法处理重金属废水研究进展. 水处理技术, 2006,32(2):9-12 Huang J. T., Xiong F., Xie W. L., et al. Progress in researches on treatment of heavy metal wastewater by adsorption process. Technology of Water Treatment, 2006,32(2):9-12(in Chinese)
    [3] Wan Ngah W. S., Hanafiah M. A. K. M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 2008,99(10):3935-3948
    [4] Reddad Z., Gerente C., Andres Y., et al. Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies. Environmental Science & Technology, 2002,36(9):2067-2073
    [5] Li Y. J., Xiang B., Ni Y. M. Removal of Cu (Ⅱ) from aqueous solutions by chelating starch derivatives. Journal of Applied Polymer Science, 2004,92(6):3881-3885
    [6] 游俏, 袁兴中, 曾光明. 腐熟污泥对废水中Cd (Ⅱ)与Zn (Ⅱ)的吸附性能研究. 环境工程学报, 2011,5(1):1-6 You Q., Yuan X. Z., Zeng G. M. Study on absorption of Zn(Ⅱ) and Cd(Ⅱ) from aqueous solution using composted sludge as absorbent. Chinese Journal of Environmental Engineering, 2011,5(1):1-6(in Chinese)
    [7] Yu J. X., Tong M., Sun X. M., et al. Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker’s yeast. Bioresource Technology, 2008,99(7):2588-2593
    [8] Kurniawan T. A., Chan G. Y. S., Lo W. H., et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 2006,366(2):409-426
    [9] 熊佰炼. 甘蔗渣吸附废水中Cd2+和Cr3+的研究. 重庆: 西南大学硕士学位论文, 2009 Xiong B. L. Investigation of the adsorption characteristics of the bagasses to Cd2+ and Cr3+ in wastewater. Chongqing: Master’s Degree Thesis of Southwest University, 2009(in Chinese)
    [10] Li N., Bai R. B., Liu C. K. Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization. Langmuir, 2005,21(25):11780-11787
    [11] Ho Y. S., McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999,34(5):451-465
    [12] Özacar M. Equilibrium and kinetic modelling of adsorption of phosphorus on calcined alunite. Adsorption, 2003,9(2):125-132
    [13] Gülay B., Arica M. Y. Construction a hybrid biosorbent using scenedesmus quadricauda and Ca-alginate for biosorption of Cu (II), Zn (II) and Ni (II): Kinetics and equilibrium studies. Bioresource Technology, 2009,100(1):186-193
    [14] Liu L.Y., Li X. G., Tang G. W., et al. Adsorption of Cu2+, Zn2+ and Cd2+ on Bacillus subtilis. Transactions of Tianjin University, 2006,12(3):104-108
    [15] 马静. 天然植物材料作为吸附剂处理低浓度重金属废水的研究. 长沙:湖南大学硕士学位论文, 2007 Ma J. Utilization of native botanic material as sorbent for removal of heavy metals from wastewater. Changsha: Master’s Degree Thesis of Hunan University, 2007(in Chinese)
  • 加载中
计量
  • 文章访问数:  3411
  • HTML全文浏览数:  2154
  • PDF下载数:  1291
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-01-17
  • 刊出日期:  2013-02-02

改性甘蔗渣对Cu2+和Zn2+的吸附机理

  • 1. 武汉工程大学化工与制药学院,绿色化工过程省部共建教育部重点实验室,武汉 430073
基金项目:

教育部创新团队项目 (IRT0974)

教育部科学技术研究重点项目 (211114)

武汉市晨光计划(201150431098)

摘要: 研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu2+和Zn2+的吸附性能,包括吸附动力学和吸附等温线。结果表明, 改性后的甘蔗渣对重金属离子Cu2+和Zn2+的吸附容量有显著提高,对Cu2+和Zn2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu2+的吸附量分别为60.21和33.45 mg/g,对Zn2+的吸附量分别是70.53和36.53 mg/g。两种改性甘蔗渣对两种金属离子的吸附在30 min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu2+和Zn2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。

English Abstract

参考文献 (15)

目录

/

返回文章
返回