进水碳氮分离对曝气生物滤池的影响

张真江, 李继, 吕小梅, 董文艺, 谢传波. 进水碳氮分离对曝气生物滤池的影响[J]. 环境工程学报, 2013, 7(8): 2956-2960.
引用本文: 张真江, 李继, 吕小梅, 董文艺, 谢传波. 进水碳氮分离对曝气生物滤池的影响[J]. 环境工程学报, 2013, 7(8): 2956-2960.
Zhang Zhenjiang, Li Ji, Dong Wenyi, Xie Chuanbo, . Impact of COD and ammonia separation on BAF performance[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 2956-2960.
Citation: Zhang Zhenjiang, Li Ji, Dong Wenyi, Xie Chuanbo, . Impact of COD and ammonia separation on BAF performance[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 2956-2960.

进水碳氮分离对曝气生物滤池的影响

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2008ZX07317-02)

  • 中图分类号: X703

Impact of COD and ammonia separation on BAF performance

  • Fund Project:
  • 摘要: BAF具有良好的硝化能力。以BAF取代A2N工艺中的接触氧化,在BAF进水前发生有机物和氨氮的分离(碳氮分离),实验研究了碳氮分离对BAF运行特性的影响。结果表明,碳氮分离使硝化段延长1.0m左右,平均提高NH4+-N去除量6mg/L左右;碳氮分离可将BAF柱反冲洗周期延长至7~8d,降低反冲洗用水用气量1/3左右,反冲后30min内即可迅速恢复硝化能力;碳氮分离使BAF柱内硝化菌占据优势,进水端0.3m处,硝化菌比例达到70%,而无碳氮分离情况下,硝化菌比例仅20%。
  • 加载中
  • [1] Torrico V., Kuba T., Kusuda T. Optimization of internal bypass ratio for complete ammonium and phosphate removal in a dephanox-rype two-sludge denitrification system. Journal of Environmental Engineering, 2008,134(7):536-542
    [2] Ng W. J., Ong S. L., Hu J. Y. Denitrifying phosphorus removal by an aerobic/anoxic sequencing batch reactor. Water Science and Technology, 2001,43(3):139-146
    [3] 罗固源, 罗宁, 吉芳英. 新型双泥生物反硝化除磷脱氮工艺. 中国给水排水, 2002,18(9):4-7 Luo G. Y., Luo N., Ji F. Y. New biological denitrification process with two-sludge for nitrogen and phosphorus removal. China Water & Wastewater, 2002,18(9):4-7(in Chinese)
    [4] 王亚宜, 彭永臻, 李探微, 等. A2N连续流双泥系统反硝化除磷脱氮试验研究. 哈尔滨工业大学学报, 2004,36(8):1046-1049 Wang Y. Y., Peng Y. Z., Li T. W., et al. Denitrifying dephosphorus removal in A2N two-sludge process. Journal of Harbin Institute of Technology, 2004,36(8):1046-1049(in Chinese)
    [5] Jens P. K., Jes P., Henze M., et al. Biological phosphorus release and uptake under alternation anaerobic and anoxic conditions in a fixed-film reactor. Water Research, 1994,28(5):1253-1255
    [6] Hao X. D. Contribution of P-bacteriain BNR processes to overall effects on the environment. Water Science and Technology, 2001,44(1):67-76
    [7] 齐兵强, 王占生. 曝气生物滤池在污水中的应用. 给水排水, 2000,26(10):4-8 Qi B.Q., Wang Z. S. Application of biological aerated filter in wastewater treatment. Water & Wastewater Engineering, 2000,26(10):4-8(in Chinese)
    [8] 李燕飞, 孙迎雪, 田媛, 等. 曝气生物滤池处理生活污水研究. 环境工程学报, 2011,5(3):575-578 Li Y. F., Sun Y. X., Tian Y., et al. Study on domestic wastewater treatment with biological aerated filter. Chinese Journal of Environmental Engineering, 2011,5(3):575-578(in Chinese)
    [9] Tschui, Boller, Gujer, et al. Tertiary nitrification in aerated pilot biofilters. Water Science and Technology, 1993,29(10-11):53-60
    [10] Mann A. Performance of floating and sunken media biological aerated fiters under unsteady state condition. Water Research, 1999,33(4):1108-1113
    [11] Chang W. S., Hong S. W., Park J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter. Process Biochemistry,2002,37(7):693-698
    [12] 王建华, 陈永志, 彭永臻. 硝化型曝气生物滤池的挂膜与启动. 环境工程学报, 2010,4(10):2199-2203 Wang J. H., Chen. Y.Z., Peng Y.Z. Biofilm formation and startup of nitrification biological aeration filter. Chinese Journal of Environmental Engineering, 2010,4(10):2199-2203(in Chinese)
    [13] Fdz-Polanco F., Mendez E., Uruena M. A., et al. Spatial distribution of heterotrophs and nitriers in a submerged biofilter for nitrification. Water Research, 2000,34(10):4081-4089
    [14] Elenter D., Milferstedt K., Zhang W., et al.Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm. Water Research, 2007,41(20):4657-4671
    [15] 王海东, 王淑莹, 彭永臻. 进水负荷对硝化菌与异养菌竞争关系的影响. 中国给水排水, 2006,22(23):26-29 Wang H. D., Wang S. Y., Peng Y. Z. Influence of applied loading on competition between nitrifiers and heterotrophs. China Water & Wastewater, 2006,22(23):26-29(in Chinese)
    [16] Hong-Duck, Joo-Hyoung. Evaluation of a three-stage biological aerated filter system combined recirculation/dynamic flow in treating low carbon-to-nitrogen ratio wastewater. Environmental Engineering Science, 2009,26(8):1349-1357
    [17] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社,2002
    [18] 赵庆良, 文淑彦, 王琨. 复合式生物膜反应器中生物膜量、厚度及活性. 哈尔滨建筑大学学报, 1999,32(6):39-42 Zhao Q. L., Wen S. Y., Wang K. Biomass, thickness and activity of biofilm in hybrid biofilm reactors. Journal of Harbin University of Civil Engineeringand Architecture,1999,32(6):39-42(in Chinese)
    [19] Surmacz-Gorska Gemaey K., Demuynck C., Vanrolleghenl P., et al. Nitrification monitoring in activated sludge by oxygen uptake rate(OUR) measurement. Water Research, 1996,30(5):1228-1236
    [20] Oash A. K. Influence of substrate ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Science and Technology, 1995,32(8):75-84
    [21] 邓征宇, 杨春平, 曾光明, 等. 两阶段曝气生物滤池的硝化性能. 环境工程学报, 2010,4(8):1714-1718 Deng Z. Y., Yang C. P., Zeng G. M., et al.Nitrification performances in up-flow two-stage biological aerated filters. Chinese Journal of Environmental Engineering, 2010,4(8):1714-1718(in Chinese)
  • 加载中
计量
  • 文章访问数:  1891
  • HTML全文浏览数:  979
  • PDF下载数:  1807
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-04-09
  • 刊出日期:  2013-08-12
张真江, 李继, 吕小梅, 董文艺, 谢传波. 进水碳氮分离对曝气生物滤池的影响[J]. 环境工程学报, 2013, 7(8): 2956-2960.
引用本文: 张真江, 李继, 吕小梅, 董文艺, 谢传波. 进水碳氮分离对曝气生物滤池的影响[J]. 环境工程学报, 2013, 7(8): 2956-2960.
Zhang Zhenjiang, Li Ji, Dong Wenyi, Xie Chuanbo, . Impact of COD and ammonia separation on BAF performance[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 2956-2960.
Citation: Zhang Zhenjiang, Li Ji, Dong Wenyi, Xie Chuanbo, . Impact of COD and ammonia separation on BAF performance[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 2956-2960.

进水碳氮分离对曝气生物滤池的影响

  • 1. 广东省建筑科学研究院, 广州 510500
  • 2. 哈尔滨工业大学深圳研究生院水资源利用与水环境安全研究中心, 深圳 518055
基金项目:

国家水体污染控制与治理科技重大专项(2008ZX07317-02)

摘要: BAF具有良好的硝化能力。以BAF取代A2N工艺中的接触氧化,在BAF进水前发生有机物和氨氮的分离(碳氮分离),实验研究了碳氮分离对BAF运行特性的影响。结果表明,碳氮分离使硝化段延长1.0m左右,平均提高NH4+-N去除量6mg/L左右;碳氮分离可将BAF柱反冲洗周期延长至7~8d,降低反冲洗用水用气量1/3左右,反冲后30min内即可迅速恢复硝化能力;碳氮分离使BAF柱内硝化菌占据优势,进水端0.3m处,硝化菌比例达到70%,而无碳氮分离情况下,硝化菌比例仅20%。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回