温度对木质纤维素水解与挥发性脂肪酸累积的影响

李玲, 闻岳, 徐超, 王莉蕙, 周琪. 温度对木质纤维素水解与挥发性脂肪酸累积的影响[J]. 环境工程学报, 2013, 7(10): 3807-3812.
引用本文: 李玲, 闻岳, 徐超, 王莉蕙, 周琪. 温度对木质纤维素水解与挥发性脂肪酸累积的影响[J]. 环境工程学报, 2013, 7(10): 3807-3812.
Li Ling, Wen Yue, Xu Chao, Wang Lihui, Zhou Qi. Effect of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3807-3812.
Citation: Li Ling, Wen Yue, Xu Chao, Wang Lihui, Zhou Qi. Effect of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3807-3812.

温度对木质纤维素水解与挥发性脂肪酸累积的影响

  • 基金项目:

    国家自然科学基金资助项目(51378372)

    同济大学"中央高校基本科研业务费专项资金"项目(0400219194)

  • 中图分类号: X703.1

Effect of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation

  • Fund Project:
  • 摘要: 木质纤维素厌氧消化过程产生的挥发性脂肪酸(VFAs)可作为外加碳源投加到人工湿地,解决人工湿地反硝化碳源不足的问题,但温度对木质纤维素厌氧消化生产VFAs过程的影响还有待深入探明。考察上述木质纤维素厌氧消化过程中有机碳源、糖与VFAs的变化规律,试图探明温度(10~55℃)对木质纤维素水解与VFAs累积的影响。研究结果表明,温度升高对木质纤维素的水解具有促进作用,对VFAs产量的影响显著。35℃时是生物质发酵产酸的最优条件,VFAs累积量不仅最早(第10天)达到最高值154 mg COD/g生物质,而且碳源的数量和品质均达到较高的水平。
  • 加载中
  • [1] Hammer D. A., Knight R.L. Designing constructed wetlands for nitrogen removal. Water Science and Technology, 1994,29(4):15-27
    [2] Osamu K., Carl H.W. Biomass Handbook. Gordon Breach Science Publisher, 1989
    [3] Fan Y. T., Zhang Y. H., Zhang S. F., et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology, 2006,97(3):500-505
    [4] Delaune R. D., Jugsujinda A., Reddy K. R. Effect of root oxygen stress on phosphorus uptake by cattail. Journal of Plant Nutrition, 1999,22(3):459-466
    [5] Yavitt J. B., Knapp A. K. Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. New Phytologist, 1998,139(3):495-503
    [6] Gajalakshmi E. V., Ramasamy E. V., Abbasi S. A. Assessment of sustainable vermiconversion of water hyacinth at different reactor efficiencies employing Eudrilus eugeniae Kinberg. Bioresource Technology, 2001,80(2):131-135
    [7] Vymazal J., Kröpfelová L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-surface Flow. Netherlands: Springer, 2010
    [8] Elefsiniotis P., Wareham D. G. Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme and Microbial Technology, 2007,41(1-2):92-97
    [9] Chandra R., Takeuchi H., Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Review, 2012,16(3):1462-1476
    [10] Ren N. Q., Wang A. J., Cao G. L. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 2008, 99(17):7928-7940
    [11] Ren N. Q., Wang A. J., Cao G. L., et al. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnology Advances, 2009,27(6):1051-1060
    [12] Appels L., Baeyens J., Degreve J., et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008,34(6):755-781
    [13] Chen Y., Wen Y., Cheng J., et al. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: Implications for denitrification in constructed wetlands. Bioresource Technology, 2011,102(3):2433-2440
    [14] Wang Y. W., Xu W. Y. The quantitative analysis of hemicelluloses, cellulose and lignin in lignocellulose solid matrix. Journal of Microbiology, 1987,27(2):82-84
    [15] Grady C. P. L., Daigger G. T., Lim H. C. Biological Wastewater Treatment, Second Ed. New York: Marcel Dekker Inc., 1999
    [16] Simone B., Charles E., Wyman. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 2010,101(13):4862-4874
    [17] Hu Z. H., Yu H. Q., Zheng J. C. Application of response surface methodology for optimization of acidogenesis of cattail by rumen cultures. Bioresource Technology, 2006,97(16):2103-2109
    [18] Ren N. Q., Wang B. Z., Huang J. C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering, 1997,54(5):428-433
    [19] Cao A. S., Xue C. H., Wen Y., et al. The effects of C/N and acetic/propionic acid ratio on the denitrification in constructed wetlands. The 5th International Conference on Bio-informatics and Biomedical Engineering (ICBBE). Wuhan: IEEE, 2011
  • 加载中
计量
  • 文章访问数:  1884
  • HTML全文浏览数:  1071
  • PDF下载数:  951
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-08-27
  • 刊出日期:  2013-10-12
李玲, 闻岳, 徐超, 王莉蕙, 周琪. 温度对木质纤维素水解与挥发性脂肪酸累积的影响[J]. 环境工程学报, 2013, 7(10): 3807-3812.
引用本文: 李玲, 闻岳, 徐超, 王莉蕙, 周琪. 温度对木质纤维素水解与挥发性脂肪酸累积的影响[J]. 环境工程学报, 2013, 7(10): 3807-3812.
Li Ling, Wen Yue, Xu Chao, Wang Lihui, Zhou Qi. Effect of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3807-3812.
Citation: Li Ling, Wen Yue, Xu Chao, Wang Lihui, Zhou Qi. Effect of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3807-3812.

温度对木质纤维素水解与挥发性脂肪酸累积的影响

  • 1. 同济大学污染控制与资源化研究国家重点实验室, 上海 200092
基金项目:

国家自然科学基金资助项目(51378372)

同济大学"中央高校基本科研业务费专项资金"项目(0400219194)

摘要: 木质纤维素厌氧消化过程产生的挥发性脂肪酸(VFAs)可作为外加碳源投加到人工湿地,解决人工湿地反硝化碳源不足的问题,但温度对木质纤维素厌氧消化生产VFAs过程的影响还有待深入探明。考察上述木质纤维素厌氧消化过程中有机碳源、糖与VFAs的变化规律,试图探明温度(10~55℃)对木质纤维素水解与VFAs累积的影响。研究结果表明,温度升高对木质纤维素的水解具有促进作用,对VFAs产量的影响显著。35℃时是生物质发酵产酸的最优条件,VFAs累积量不仅最早(第10天)达到最高值154 mg COD/g生物质,而且碳源的数量和品质均达到较高的水平。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回