不同工艺对含高浓度腐殖酸地下水处理的可行性

宋数宾, 高雅, 张伟军, 徐慧, 肖峰, 周才勇. 不同工艺对含高浓度腐殖酸地下水处理的可行性[J]. 环境工程学报, 2013, 7(10): 3890-3894.
引用本文: 宋数宾, 高雅, 张伟军, 徐慧, 肖峰, 周才勇. 不同工艺对含高浓度腐殖酸地下水处理的可行性[J]. 环境工程学报, 2013, 7(10): 3890-3894.
Song Shubin, Gao Ya, Zhang Weijun, Xu Hui, Xiao Feng, Zhou Caiyong. Feasibility of treatment of ground water with high humic acid content using different technologies[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3890-3894.
Citation: Song Shubin, Gao Ya, Zhang Weijun, Xu Hui, Xiao Feng, Zhou Caiyong. Feasibility of treatment of ground water with high humic acid content using different technologies[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3890-3894.

不同工艺对含高浓度腐殖酸地下水处理的可行性

  • 基金项目:

    国家"973"课题(2011CB933704)

    国家杰出青年科学基金资助项目(51025830)

  • 中图分类号: X703.1

Feasibility of treatment of ground water with high humic acid content using different technologies

  • Fund Project:
  • 摘要: 针对内蒙古农村地区高腐殖酸地下水的处理问题,分别对(pH调节)-PAC强化混凝、高锰酸钾预氧化/混凝、活性炭吸附/混凝、Fenton氧化等技术处理的可行性进行了研究,同时利用三维荧光和高效体积排阻色谱分析处理前后水中有机物的组成变化特征。有机分析结果显示,水中的有机物为腐殖酸类物质,分子量分别为1 600和3 500,腐殖酸类物质为水中色度的主要贡献者。原水PAC强化混凝、高锰酸钾预氧化/PAC混凝对有机物的去除效果不佳,处理前后水样DOC浓度无明显变化,而pH调节-PAC强化混凝、微米活性炭吸附和Fenton氧化均能有效去除有机物。将原水pH调节至6.5,经300 mg/L PAC混凝后出水DOC降至5.99 mg/L。活性炭投加量为0.6 g/L时,DOC降至7.6 mg/L,然后采用60 mg/L PAC混凝出去高度分散而不易沉降的小颗粒活性炭。此外,当反应初始pH值为3,过氧化氢投加量为0.5%(v/v),亚铁和双氧水摩尔比为0.05时,出水DOC降至5.6 mg/L,氧化后有小分子有机物生成。
  • 加载中
  • [1] Andre C.S., Khraisheh M. Removal of humic substances from drinking water using GAC and iron-coated adsorbents: Consideration of two kinetic models and the influence of mixing. Environmental Engineering Science, 2009,26(1):235-243
    [2] 余孝颖. 内蒙高腐殖酸地下水中碘的分布特征与IDD病的关系. 环境科学,2000,21(3):56-59 Yu Xiaoying. Distribution characteristics of iodine in humic acid-high underground water in Inner Mongolia and their relations to iodine defect disease. Enviromental Science, 2000,21(3):56-59(in Chinese)
    [3] Wang D. S., Xing L. N., Xie J. K., et al. Application of advanced characterization techniques to assess DOM treatability of micro-polluted and un-polluted drinking source waters in China. Chemosphere, 2010,81(1):39-45
    [4] Chow C. W. K., Fabris R., Leeuwen J. V. et al. Assessing natural organic matter treatability using high performance size exclusion chromatography. Environmental Science & Technology, 2008,42(17):6683-6689
    [5] Matilainen A., Vepsalainen M., Sillanpaa M. Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 2010.159(2):189-197
    [6] 刘海龙, 夏忠欢, 王东升,等. 典型南方水强化混凝有机物分级处理研究. 环境科学, 2006,27(5):909-912 Liu Hailong, Xia Zhonghuan, Wang Dongsheng, et al. Enhanced coagulation and NOM fractionation study of a typical Southern water. Enviromental Science, 2006,27(5):909-912(in Chinese)
    [7] Yan M., Wang D. S., You S. J., et al. Enhanced coagulation in a typical North-China water treatment plant. Water Research, 2006,40(19):3621-3627
    [8] 胡劲召, 占达东, 王玉杰,等. 高锰酸钾预氧化-混凝沉淀组合工艺处理微污染水研究. 生态环境学报, 2011,20(3):511-514 Hu Jinzhan, Zhan Dadong, Wang Yujie, et al. Combination process of KMnO4 pre-oxidation coagulative precipitation in slightly polluted water treatment. Ecology and Environmental Sciences, 2011,20(3):511-514(in Chinese)
    [9] Camel V., Bermond A. The use of ozone and associated oxidation processes in drinking water treatment. Water Research, 1998,32(11):3208-3222
    [10] Pignatello J. J., Oliveros E., MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 2006,36(1):1-84
    [11] Wang L. K., Hung Y. T., Shammas N. K. Advanced Physicochemical Treatment Processes. New Jersey: Humana Pr. Inc., 2006
    [12] Murray C. A., Parsons S. A. Removal of NOM from drinking water: Fenton's and photo-Fenton's processes. Chemosphere, 2004,54(7):1017-1023
    [13] Chen W., Westerhoff P., Leenheer J. A., et al. Fluorescence excitation:Emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003,37(24):5701-5710
    [14] Fearing D. A., Banks J., Guyetand S., et al. Combination of ferric and MIEX® for the treatment of a humic rich water. Water Research, 2004,38(10):2551-2558
  • 加载中
计量
  • 文章访问数:  2277
  • HTML全文浏览数:  1148
  • PDF下载数:  1138
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-20
  • 刊出日期:  2013-10-12
宋数宾, 高雅, 张伟军, 徐慧, 肖峰, 周才勇. 不同工艺对含高浓度腐殖酸地下水处理的可行性[J]. 环境工程学报, 2013, 7(10): 3890-3894.
引用本文: 宋数宾, 高雅, 张伟军, 徐慧, 肖峰, 周才勇. 不同工艺对含高浓度腐殖酸地下水处理的可行性[J]. 环境工程学报, 2013, 7(10): 3890-3894.
Song Shubin, Gao Ya, Zhang Weijun, Xu Hui, Xiao Feng, Zhou Caiyong. Feasibility of treatment of ground water with high humic acid content using different technologies[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3890-3894.
Citation: Song Shubin, Gao Ya, Zhang Weijun, Xu Hui, Xiao Feng, Zhou Caiyong. Feasibility of treatment of ground water with high humic acid content using different technologies[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3890-3894.

不同工艺对含高浓度腐殖酸地下水处理的可行性

  • 1. 江苏扬农锦湖化工有限公司, 扬州 211400
  • 2. 西安建筑科技大学环境与市政工程学院, 西安 710055
  • 3. 中国科 学院生态环境研究中心环境水质学国家重点实验室, 北京 100086
  • 4. 台州市委市政府农村工作办公室, 台州 318000
基金项目:

国家"973"课题(2011CB933704)

国家杰出青年科学基金资助项目(51025830)

摘要: 针对内蒙古农村地区高腐殖酸地下水的处理问题,分别对(pH调节)-PAC强化混凝、高锰酸钾预氧化/混凝、活性炭吸附/混凝、Fenton氧化等技术处理的可行性进行了研究,同时利用三维荧光和高效体积排阻色谱分析处理前后水中有机物的组成变化特征。有机分析结果显示,水中的有机物为腐殖酸类物质,分子量分别为1 600和3 500,腐殖酸类物质为水中色度的主要贡献者。原水PAC强化混凝、高锰酸钾预氧化/PAC混凝对有机物的去除效果不佳,处理前后水样DOC浓度无明显变化,而pH调节-PAC强化混凝、微米活性炭吸附和Fenton氧化均能有效去除有机物。将原水pH调节至6.5,经300 mg/L PAC混凝后出水DOC降至5.99 mg/L。活性炭投加量为0.6 g/L时,DOC降至7.6 mg/L,然后采用60 mg/L PAC混凝出去高度分散而不易沉降的小颗粒活性炭。此外,当反应初始pH值为3,过氧化氢投加量为0.5%(v/v),亚铁和双氧水摩尔比为0.05时,出水DOC降至5.6 mg/L,氧化后有小分子有机物生成。

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回