骨炭对Pb(Ⅱ)的吸附特性

张金利, 刘大伟, 杨庆. 骨炭对Pb(Ⅱ)的吸附特性[J]. 环境工程学报, 2014, 8(5): 1784-1790.
引用本文: 张金利, 刘大伟, 杨庆. 骨炭对Pb(Ⅱ)的吸附特性[J]. 环境工程学报, 2014, 8(5): 1784-1790.
Zhang Jinli, Liu Dawei, Yang Qing. Adsorption behaviors of bone char to heavy metal Pb(Ⅱ)[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1784-1790.
Citation: Zhang Jinli, Liu Dawei, Yang Qing. Adsorption behaviors of bone char to heavy metal Pb(Ⅱ)[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1784-1790.

骨炭对Pb(Ⅱ)的吸附特性

  • 基金项目:

    国家自然科学基金资助项目(51179023)

  • 中图分类号: X703

Adsorption behaviors of bone char to heavy metal Pb(Ⅱ)

  • Fund Project:
  • 摘要: 通过间歇实验研究了骨炭对重金属Pb(Ⅱ)的吸附特性。探讨了固液比、pH、离子强度、反应时间、温度及初始浓度等因素的影响。实验结果表明,pH与固液比显著影响去除率,温度与离子强度的影响较小。当温度为20℃,pH=2.5,Pb(Ⅱ)的初始浓度为200 mg/L,固液比为1 g/L时,最大去除率近100%。动力学实验结果表明,骨炭对Pb(Ⅱ)的吸附为快速反应,在30 min内可达到平衡,准二级动力学模型可较好地拟合实验结果。等温吸附实验结果表明,Freundlich模型与Langmuir模型均可较好地拟合等温吸附实验结果。骨炭对Pb(Ⅱ)的吸附机制主要为表面络合反应与分解置换-沉淀反应。
  • 加载中
  • [1] T. Kaludjerovic-Radoicic, S. Raicevic. Aqueous Pb sorption by synthetic and natural apatite: Kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 2010, 160(2): 503-510
    [2] 金娜, 印万忠. 铅的危害及国内外除铅的研究现状. 有色矿冶, 2006, (S1): 114-115, 118 Jin Na, Yin Wanzhong. The Harm of Lead and Current Research of Eliminate Method. Non-Ferrous Mining and Metallurgy, 2006, (S1): 114-115, 118(in Chinese)
    [3] J.O. Esalah, M.E. Weber, J.H. Vera. Removal of lead from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Separation and Purification Technology, 1999, 18(1): 25-36
    [4] R.S. Juang, R.C. Shiau. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 2000, 165(2): 159-167
    [5] S. Ahmed, S. Chughtai, M.A. Keane. The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite. Separation and Purification Technology, 1998, 13(1): 57-64
    [6] V.K. Gupta, A.K. Shrivastava, N. Jain. Biosorption of chromium(Ⅵ) from aqueous solutions by green algae spirogyra species. Water Research, 2001, 35(17): 4079-4085
    [7] A. Esposito, F. Pagnanelli, A. Lodi. Biosorption of heavy metals by Sphaerotilus natans: An equilibrium study at different pH and biomass concentrations. Hydrometallurgy, 2001, 60(2): 129-141
    [8] J. Wang, C. Chen. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 2006, 24(5): 427-451
    [9] E. Pehlivan, T. Altun, S. Cetin. Lead sorption by waste biomass of hazelnut and almond shell. J. Hazard. Mater., 2009, 167(1-3): 1203-1208
    [10] U. Suryavanshi, S.R. Shukla. Adsorption of Pb2+ by Alkali-treated citrus limetta peels. Industrial & Engineering Chemistry Research, 2010, 49(22): 11682-11688
    [11] A.G. Leyva, J. Marrero, P. Smichowski. Sorption of antimony onto hydroxyapatite. Environmental Science & Technology, 2001, 35(18): 3669-3675
    [12] B. Sandrine, N. Ange, B.A. Didier. Removal of aqueous lead ions by hydroxyapatites: Equilibria and kinetic processes. J. Hazard. Mater., 2007, 139(3): 443-446
    [13] A. Corami, S. Mignardi, V. Ferrini. Cadmium removal from single-and multi-metal (Cd+Pb+Zn+Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci., 2008, 317(2): 402-408
    [14] Q.Y. Ma, S.J. Traina, T.J. Logan. In situ lead immobilization by apatite. Environmental Science & Technology, 1993, 27(9): 1803-1810
    [15] S. Al-Asheh, F. Banat, F. Mohai. Sorption of copper and nickel by spent animal bones. Chemosphere, 1999, 39(12): 2087-2096
    [16] Y. Xu, D. Wang, L. Yang. Hydrothermal conversion of coral into hydroxyapatite. Materials Characterization, 2001, 47(2): 83-87
    [17] D. Liao, W. Zheng, X. Li. Removal of lead(Ⅱ) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J. Hazard. Mater., 2010, 177(1-3): 126-130
    [18] S. Lazarević, I. Janković-Častvan, D. Tanasković. Sorption of Pb2+, Cd2+, and Sr2+ ions on calcium hydroxyapatite powder obtained by the hydrothermal method. Journal of Environmental Engineering, 2008, 134(8): 683-688
    [19] 滕曼, 付强, 贾立明. 骨炭对铅的吸附性能研究. 环境科学与技术, 2010, (3): 88-91 Teng Man, Fu Qiang, Jia Liming. Study on lead ion adsorption on bone char. Environmental Science & Technology, 2010, (3): 88-91(in Chinese)
    [20] R. Balasubramanian, S.V. Perumal, K. Vijayaraghavan. Equilibrium isotherm studies for the multicomponent adsorption of lead, zinc, and cadmium onto indonesian peat. Industrial & Engineering Chemistry Research, 2009, 48(4): 2093-2099
    [21] 张金利, 张林林. 重金属Pb(Ⅱ)在黏土上吸附特性研究. 岩土工程学报, 2012, (9): 1584-1589 Zhang Jinli, Zhang Linlin. Adsorption behaviors of heavy metal Pb(Ⅱ) on clay. Chinese Journal of Geotechnical Engineering, 2012, (9): 1584-1589(in Chinese)
    [22] S.H. Abdel-Halim, A.M.A. Shehata, M.F. El-Shahat. Removal of lead ions from industrial waste water by different types of natural materials. Water Research, 2003, 37(7): 1678-1683
    [23] S. Meski, S. Ziani, H. Khireddine. Removal of lead ions by hydroxyapatite prepared from the egg shell. Journal of Chemical & Engineering Data, 2010, 55(9): 3923-3928
    [24] B. Kizilkaya, A.A. Tekinay, Y. Dilgin. Adsorption and removal of Cu (Ⅱ) ions from aqueous solution using pretreated fish bones. Desalination, 2010, 264(1-2): 37-47
    [25] F. Boudrahem, F. Aissani-Benissad, H. Aït-Amar. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manage., 2009, 90(10): 3031-3039
    [26] E. Deydier, R. Guilet, P. Sharrock. Beneficial use of meat and bone meal combustion residue: "an efficient low cost material to remove lead from aqueous effluent". J. Hazard. Mater., 2003, 101(1): 55-64
    [27] B.H. Hameed, J.M. Salman, A.L. Ahmad. Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater., 2009, 163(1): 121-126
    [28] J. J. Kipling. Adsorption from solutions of Non-electrolytes. J. Colloid Interface Sci., 1965, 23(1): 155
    [29] Y.N. Chen, L.Y. Chai, Y.D. Shu. Study of arsenic(V) adsorption on bone char from aqueous solution. J. Hazard. Mater., 2008, 160(1): 168-172
    [30] S. Dimović, I. Smićiklas, I. Plećaš. Comparative study of differently treated animal bones for Co2+ removal. J. Hazard. Mater., 2009, 164(1): 279-287
    [31] A. Ben Nasr, K. Walha, C. Charcosset. Removal of fluoride ions using cuttlefish bones. Journal of Fluorine Chemistry, 2011, 132(1): 57-62
    [32] E. Valsami-Jones, K.V. Ragnarsdottir, A. Putnis. The dissolution of apatite in the presence of aqueous metal cations at pH 2-7. Chemical Geology, 1998, 151(1-4): 215-233
  • 加载中
计量
  • 文章访问数:  1772
  • HTML全文浏览数:  1157
  • PDF下载数:  936
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-05-14
  • 刊出日期:  2014-05-06
张金利, 刘大伟, 杨庆. 骨炭对Pb(Ⅱ)的吸附特性[J]. 环境工程学报, 2014, 8(5): 1784-1790.
引用本文: 张金利, 刘大伟, 杨庆. 骨炭对Pb(Ⅱ)的吸附特性[J]. 环境工程学报, 2014, 8(5): 1784-1790.
Zhang Jinli, Liu Dawei, Yang Qing. Adsorption behaviors of bone char to heavy metal Pb(Ⅱ)[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1784-1790.
Citation: Zhang Jinli, Liu Dawei, Yang Qing. Adsorption behaviors of bone char to heavy metal Pb(Ⅱ)[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1784-1790.

骨炭对Pb(Ⅱ)的吸附特性

  • 1.  大连理工大学岩土工程研究所, 大连 116024
基金项目:

国家自然科学基金资助项目(51179023)

摘要: 通过间歇实验研究了骨炭对重金属Pb(Ⅱ)的吸附特性。探讨了固液比、pH、离子强度、反应时间、温度及初始浓度等因素的影响。实验结果表明,pH与固液比显著影响去除率,温度与离子强度的影响较小。当温度为20℃,pH=2.5,Pb(Ⅱ)的初始浓度为200 mg/L,固液比为1 g/L时,最大去除率近100%。动力学实验结果表明,骨炭对Pb(Ⅱ)的吸附为快速反应,在30 min内可达到平衡,准二级动力学模型可较好地拟合实验结果。等温吸附实验结果表明,Freundlich模型与Langmuir模型均可较好地拟合等温吸附实验结果。骨炭对Pb(Ⅱ)的吸附机制主要为表面络合反应与分解置换-沉淀反应。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回