吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响

郭亚利, 严锦根, 侯万国. 吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响[J]. 环境工程学报, 2014, 8(5): 1791-1796.
引用本文: 郭亚利, 严锦根, 侯万国. 吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响[J]. 环境工程学报, 2014, 8(5): 1791-1796.
Guo Yali, Yan Jingen, Hou Wanguo. Effect of sorbent concentration on Zn(Ⅱ) and Cd(Ⅱ) adsorption on kaolinite[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1791-1796.
Citation: Guo Yali, Yan Jingen, Hou Wanguo. Effect of sorbent concentration on Zn(Ⅱ) and Cd(Ⅱ) adsorption on kaolinite[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1791-1796.

吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响

  • 基金项目:

    国家自然科学基金资助项目(21173135)

    高等学校博士学科点专项科研基金(20110131130008)

  • 中图分类号: O647.3

Effect of sorbent concentration on Zn(Ⅱ) and Cd(Ⅱ) adsorption on kaolinite

  • Fund Project:
  • 摘要: 研究了吸附剂浓度(Cs)对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响。结果表明,随Cs增大,吸附等温线下降,呈现出明显的吸附剂浓度效应(Cs-effect)。采用经典Langmuir和Freundlich吸附等温式对吸附数据进行拟合表明,在给定Cs下,Zn(Ⅱ)和Cd(Ⅱ)的吸附等温线分别符合Langmuir和Freundlich等温式;但这2个等温式不能描述或预测Cs-effect,模型参数与Cs有关,与模型理论预测相悖。为解释和描述固/液界面吸附中的Cs-effect,我们近期提出了表面组分活度(SCA)模型,并推导出了Langmuir-SCA和Freundlich-SCA等温式。采用SCA模型等温式对吸附数据进行拟合表明,Langmuir-SCA和Freundlich-SCA等温式可分别准确地描述Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的Cs-effect结果,证明SCA模型是合理的。
  • 加载中
  • [1] Bhattacharyya K. G., Gupta S. S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 2008, 140(2): 114-131
    [2] Yavuz Ö., Altunkaynak Y., Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 2003, 37(4): 948-952
    [3] O'Connor D. J., Connolly J. P. The effect of concentration of adsorbing solids on the partition coefficient. Water Research, 1980, 14(10): 1517-1523
    [4] Voice T. C., Weber W. J. Sorbent concentration effects in liquid/solid partitioning. Environ. Sci. & Technol., 1985, 19(9): 789-796
    [5] DiToro D. M., Mahony J. D., Kirchgraber P. R., et al. Effects of nonreversibility, particle concentration, and ionic strength on heavy-metal sorption. Environ. Sci. & Technol., 1986, 20(1): 55-61
    [6] Pan G., Liss P. S. Metastable-equilibrium adsorption theory: I. Theoretical. Journal of Colloid and Interface Science, 1998, 201(1): 71-76
    [7] 潘刚. 亚稳平衡态吸附(MEA)理论—传统吸附热力学理论面临的挑战与发展. 环境科学学报, 2003, 23(2): 156-173 Pan G. Metastable equilibrium adsorption theory: A challenge and development to classical thermodynamic adsorption theories. Acta Scientiae Circumstantiae, 2003, 23(2): 156-173(in Chinese)
    [8] Helmy A. K., Ferreiro E. A., de Bussetti S. G. Effect of particle association on 2, 2'-bipyridyl adsorption onto kaolinite. Journal of Colloid and Interface Science, 2000, 225(2): 398-402
    [9] Chang T. W., Wang M. K. Assessment of sorbent/water ratio effect on adsorption using dimensional analysis and batch experiments. Chemosphere, 2002, 48(4): 419-426
    [10] Wu X. F., Hu Y. L., Zhao F., et al. Ion adsorption components in liquid/solid systems. Journal of Environmental Sciences, 2006, 18(6): 1167-1175
    [11] Fehse K. U., Borg H., Sorkau E., et al. Correcting the effect of the sorbent to solution ratio on sorption isotherms from batch tests with soils and sediments. Water, Air, & Soil Pollution, 2010, 210(1-4): 211-220
    [12] Zhao L. X., Hou W. G. The effect of sorbent concentration on the partition coefficient of pollutants between aqueous and particulate phases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396: 29-34
    [13] Zhao L. X., Song S. E., Du N., et al. A sorbent concentration-dependent Langmuir isotherm. Acta Physico-Chimica Sinica, 2012, 28(12): 2905-2910
    [14] Zhao L. X., Song S. E., Du N., et al. A sorbent concentration-dependent Freundlich isotherm. Colloid and Polymer Science, 2013, 291(3): 541-550
    [15] Iraolagoitia X. L. R., Martini M. F. Ca2+ adsorption to lipid membranes and the effect of cholesterol in their composition. Colloids and Surfaces B: Biointerfaces, 2010, 76(1): 215-220
    [16] 赵芳, 吴晓芙, 张艳丽, 等. 固液相离子吸附体系中吸附剂浓度效应与Langmuir方程的适用性. 环境化学, 2007, 26(3):335-338 Zhao F., Wu X., Zhang Y., et al. Adsorbent effect and applicability of Langmuir equation for describing ion adsorption in liquid/solid systems. Environmental Chemistry, 2007, 26(3):335-338(in Chinese)
    [17] 徐丛, 李薇, 潘纲. Zn(Ⅱ)/FeOOH吸附体系的固体浓度效应. 物理化学学报, 2009, 25(9):1737-1742 Xu C., Li W., Pan G. Particle concentration effect on Zn(Ⅱ) adsorption at water goethite interfaces. Acta Physico-Chimica Sinica, 2009, 25(9):1737-1742 (in Chinese)
    [18] Arias F., Sen T. K. Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1-3): 100-108
    [19] Sen T. K., Gomez D. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination, 2011, 267(2-3): 286-294
    [20] Gupta S. S., Bhattacharyya K. G. Removal of Cd(Ⅱ) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 2006, 128(2-3): 247-257
    [21] Bhattacharyya K. G., Gupta S. S. Adsorptive accumulation of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Ni(Ⅱ) from water on montmorillonite: Influence of acid activation. Journal of Colloid and Interface Science, 2007, 310(2): 411-424
    [22] Bhattacharyya K. G., Sen Gupta S. Influence of acid activation of kaolinite and montmorillonite on adsorptive removal of Cd(Ⅱ) from water. Industrial & Engineering Chemistry Research, 2007, 46(11): 3734-3742
    [23] Shahmohammadi-Kalalagh S., Babazadeh H., Nazemi A. Comparison of linear and nonlinear forms of isotherm models for Zn(Ⅱ) and Cu(Ⅱ) sorption on a kaolinite. Arabian Journal of Geosciences, 2013, DOI: 10.1007/s12517-013-1114-z
    [24] Shahmohammadi-Kalalagh S., Babazadeh H. Isotherms for the sorption of zinc and copper onto kaolinite: Comparison of various error functions. International Journal of Environmental Science and Technology, 2014, 11(1):111-118
  • 加载中
计量
  • 文章访问数:  1709
  • HTML全文浏览数:  1007
  • PDF下载数:  970
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-17
  • 刊出日期:  2014-05-06
郭亚利, 严锦根, 侯万国. 吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响[J]. 环境工程学报, 2014, 8(5): 1791-1796.
引用本文: 郭亚利, 严锦根, 侯万国. 吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响[J]. 环境工程学报, 2014, 8(5): 1791-1796.
Guo Yali, Yan Jingen, Hou Wanguo. Effect of sorbent concentration on Zn(Ⅱ) and Cd(Ⅱ) adsorption on kaolinite[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1791-1796.
Citation: Guo Yali, Yan Jingen, Hou Wanguo. Effect of sorbent concentration on Zn(Ⅱ) and Cd(Ⅱ) adsorption on kaolinite[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1791-1796.

吸附剂浓度对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响

  • 1. 山东大学环境研究院, 济南 250100
  • 2. 中石化胜利油田分公司孤东采油厂, 东营 257237
  • 3. 山东大学胶体与界面化学教育部重点实验室, 济南 250100
基金项目:

国家自然科学基金资助项目(21173135)

高等学校博士学科点专项科研基金(20110131130008)

摘要: 研究了吸附剂浓度(Cs)对Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的影响。结果表明,随Cs增大,吸附等温线下降,呈现出明显的吸附剂浓度效应(Cs-effect)。采用经典Langmuir和Freundlich吸附等温式对吸附数据进行拟合表明,在给定Cs下,Zn(Ⅱ)和Cd(Ⅱ)的吸附等温线分别符合Langmuir和Freundlich等温式;但这2个等温式不能描述或预测Cs-effect,模型参数与Cs有关,与模型理论预测相悖。为解释和描述固/液界面吸附中的Cs-effect,我们近期提出了表面组分活度(SCA)模型,并推导出了Langmuir-SCA和Freundlich-SCA等温式。采用SCA模型等温式对吸附数据进行拟合表明,Langmuir-SCA和Freundlich-SCA等温式可分别准确地描述Zn(Ⅱ)和Cd(Ⅱ)在高岭土上吸附的Cs-effect结果,证明SCA模型是合理的。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回