混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水

罗锺兵, 杨春平, 曾光明, 何慧军, 骆其超, 罗圣熙. 混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水[J]. 环境工程学报, 2014, 8(6): 2257-2261.
引用本文: 罗锺兵, 杨春平, 曾光明, 何慧军, 骆其超, 罗圣熙. 混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水[J]. 环境工程学报, 2014, 8(6): 2257-2261.
Luo Zhongbing, Yang Chunping, Zeng Guangming, He Huijun, Luo Qichao, Luo Shengxi. Treatment of vanadium smelting wastewater by means of coagulation-sand filtration-activated carbon filter-microfiltration-RO integration technology[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2257-2261.
Citation: Luo Zhongbing, Yang Chunping, Zeng Guangming, He Huijun, Luo Qichao, Luo Shengxi. Treatment of vanadium smelting wastewater by means of coagulation-sand filtration-activated carbon filter-microfiltration-RO integration technology[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2257-2261.

混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水

  • 基金项目:

    国家自然科学基金资助项目(51278464,50778066)

    高等学校博士学科点专项科研基金资助课题(20090161110010)

    湖南省环保厅环保科技课题研究项目(GLTC-2011HN149)

  • 中图分类号: X703

Treatment of vanadium smelting wastewater by means of coagulation-sand filtration-activated carbon filter-microfiltration-RO integration technology

  • Fund Project:
  • 摘要: 针对在“低钠焙烧水浸提取偏钒酸钠-离子交换树脂提纯-氯化铵沉钒”生产钒工艺下产生的废水的高盐度,可生化性差,使用传统的方法难以达到排放标准等特点,提出了“混凝-砂滤-活性炭过滤-微滤-反渗透”集成技术处理钒冶炼废水。考察了混凝沉淀的最佳条件,同时重点探讨了操作压力、运行时间和pH等操作参数对膜运行效果的影响。反渗透出水的COD为20.7 mg/L,Cl-为176 mg/L,电导率为387 μS /cm,除盐率达到99.4%,总铬、六价铬和总钒等重金属的去除率都达到99%以上,远远低于国家规定的排放标准,该出水能回用于大部分生产工序;浓缩液也能回用于成球工艺和烟气处理工序,实现了钒冶炼废水的零排放。具有比较可观的经济价值和广阔的应用前景。
  • 加载中
  • [1] Zhu X. B., Zhang Y. M., Huang J., et al. A kinetics study of multi-stage counter-current circulation acid leaching of vanadium from stone coal. International Journal of Mineral Processing, 2012, 114(11): 1-6
    [2] 王忠,王军. 国内外五氧化二钒市场状况与分析.矿冶, 2007, 16(2): 47-52 Wang Z., Wang J. Situ at ion and analy sis of vanadium pentoxide market at home and abroad. Mining & Metallurgy, 2007, 16(2): 47-52(in Chinese)
    [3] Zhang Y. M., Bao S. X., Liu T., et al. The technology of extracting vanadium from stone coal in China: History, currentstatus and future prospects. Hydrometallurgy, 2011, 109(1-2):116-124
    [4] 李兰杰,张力,郑诗礼,等. 钒钛磁铁矿钙化焙烧及其酸浸提钒. 过程工程学报, 2011, 11(4): 573-578 Li L. J., Zhang L.,Zheng S. L., et al. Acid leaching of calcined vanadiumtitanomagnetitewith calcium compounds for extraction of vanadium. The Chinese Journal of Process Engineering, 2011, 11(4): 573-578(in Chinese)
    [5] He Dongsheng, Feng Qiming, Zhang Guofan,et al.A environmentally-friendly technology of vanadium extraction from stone coal. Minerals Engineering, 2007, 20(12):1184-1186
    [6] Zhu Y. G., Zhang G. F., Feng Q. M., et al. Acid leaching of vanadium from roasted residue of stone coal. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 107-111
    [7] Minelli L., Veschem E. Vanadium in Italian waters:Monitoring and speciation of V(IV) and V(V).Microchemical Journal,2000,67(1-3):83-90
    [8] 包申旭,张一敏,刘涛, 等. 电渗析处理石煤提钒废水.中国有色金属学报, 2010,20(7):1440-1445 Bao S. X.,Zhang Y. M.,Liu T., et al. Electrodialytic treatment of wastewater produced invanadium extraction from stone coal. The Chinese Journal of Nonferrous Metals,2010,20(7): 1440-1445(in Chinese)
    [9] 曾杭成, 张国亮, 孟琴, 等. 超滤-反渗透双膜技术深度处理印染废水. 环境工程学报, 2008,2(8):1021-1025 Zeng H. C.,Zhang G. L.,Meng Q., et al. Treatment of textile wastewater using ultratfiiltration and reverse osmosis dual membrane system. Chinese Journal of Environmental Engineering, 2008, 2(8): 1021-1025(in Chinese)
    [10] Wang Zhi, Zhao Yuanyuan, Wang Jixiao, et al. Studies on nanofiltration membr ane fouling in the treatment of water solutions containing humic acids. Desalination, 2005, 178(1-3):171-178
    [11] 安兴才, 赵柱, 杨惠琳, 等. 膜集成技术深度处理石化行业排放水回用于生产的研究. 膜科学与技术,2005, 25(4):67- 68 An X. C., Zhao Z., Yang H. L., et al. The research of membrane integrated technology depth processing and petrochemical industries discharge water back to production. Membrane Science and Technology, 2005, 25(4):67- 68(in Chinese)
    [12] 陈家岭. 我国反渗透膜材料研究现状. 净水技术, 2011, 30(3):34-37 Chen J. L. A survey of materials research of reverse osmosis(RO) membrane at home. Water Purification Technology, 2011, 30(3):34-37(in Chinese)
    [13] 庄秀梅. 电厂废水处理技术. 北京: 中国电力出版社,2007
    [14] Alhseinat E., Sheikholeslami R. A completely theoretical approach for assessing fouling propensity along a full-scale reverse osmosis process. Desalination,2012, 301(9): 1- 9
    [15] 陈明, 倪文, 黄万抚. 反渗透处理金铜矿山酸性废水. 膜科学与技术,2008, 28(3): 95-99 Chen M., Ni W., Huang W. F. An experimental study on using reverse osmosis to treat acid mine drainage of gold- copper mine. Membrane Science and Technology, 2008, 28(3):95-99(in Chinese)
  • 加载中
计量
  • 文章访问数:  1777
  • HTML全文浏览数:  1168
  • PDF下载数:  858
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-08-01
  • 刊出日期:  2014-05-29
罗锺兵, 杨春平, 曾光明, 何慧军, 骆其超, 罗圣熙. 混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水[J]. 环境工程学报, 2014, 8(6): 2257-2261.
引用本文: 罗锺兵, 杨春平, 曾光明, 何慧军, 骆其超, 罗圣熙. 混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水[J]. 环境工程学报, 2014, 8(6): 2257-2261.
Luo Zhongbing, Yang Chunping, Zeng Guangming, He Huijun, Luo Qichao, Luo Shengxi. Treatment of vanadium smelting wastewater by means of coagulation-sand filtration-activated carbon filter-microfiltration-RO integration technology[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2257-2261.
Citation: Luo Zhongbing, Yang Chunping, Zeng Guangming, He Huijun, Luo Qichao, Luo Shengxi. Treatment of vanadium smelting wastewater by means of coagulation-sand filtration-activated carbon filter-microfiltration-RO integration technology[J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2257-2261.

混凝-砂滤-活性炭过滤-微滤-反渗透集成技术处理钒冶炼废水

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
  • 3.  浙江工商大学环境科学与工程学院, 浙江省固体废物处理与资源化重点实验室, 杭州 310012
基金项目:

国家自然科学基金资助项目(51278464,50778066)

高等学校博士学科点专项科研基金资助课题(20090161110010)

湖南省环保厅环保科技课题研究项目(GLTC-2011HN149)

摘要: 针对在“低钠焙烧水浸提取偏钒酸钠-离子交换树脂提纯-氯化铵沉钒”生产钒工艺下产生的废水的高盐度,可生化性差,使用传统的方法难以达到排放标准等特点,提出了“混凝-砂滤-活性炭过滤-微滤-反渗透”集成技术处理钒冶炼废水。考察了混凝沉淀的最佳条件,同时重点探讨了操作压力、运行时间和pH等操作参数对膜运行效果的影响。反渗透出水的COD为20.7 mg/L,Cl-为176 mg/L,电导率为387 μS /cm,除盐率达到99.4%,总铬、六价铬和总钒等重金属的去除率都达到99%以上,远远低于国家规定的排放标准,该出水能回用于大部分生产工序;浓缩液也能回用于成球工艺和烟气处理工序,实现了钒冶炼废水的零排放。具有比较可观的经济价值和广阔的应用前景。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回