内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用

李维, 杨永哲. 内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用[J]. 环境工程学报, 2014, 8(9): 3743-3748.
引用本文: 李维, 杨永哲. 内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用[J]. 环境工程学报, 2014, 8(9): 3743-3748.
Li Wei, Yang Yongzhe. In-stream electron acceptor generation and its application in inhibiting P-release behavior of P-rich excess activated sludge[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3743-3748.
Citation: Li Wei, Yang Yongzhe. In-stream electron acceptor generation and its application in inhibiting P-release behavior of P-rich excess activated sludge[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3743-3748.

内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用

  • 基金项目:

    高等学校博士学科点专项科研基金(20116120110008)

    陕西省自然科学基础研究计划重点项目(2010JZ008)

  • 中图分类号: X703

In-stream electron acceptor generation and its application in inhibiting P-release behavior of P-rich excess activated sludge

  • Fund Project:
  • 摘要: 根据生物脱氮除磷系统产生的富磷剩余污泥含有硝化细菌和生产废水含有高浓度氨氮的特点,将生产废水中的氨氮转化为硝酸盐(内源电子受体),并将获得的内源电子受体利用在富磷剩余污泥浓缩过程,同步实现内源电子受体反硝化及其抑制富磷剩余污泥释磷行为。结果表明,将富磷剩余污泥(excess activated sludge,EAS。EAS1是在好氧方式下添加,EAS2是在缺氧方式下添加)与生产废水(reject water)按4种比例(Ⅰ、生产废水:EAS1:EAS2=15%:85%:0%;Ⅱ、生产废水:EAS1:EAS2=15%:80%:5%;Ⅲ、生产废水:EAS1:EAS2=15%:75%:10%;Ⅳ、生产废水:EAS1:EAS2=15%:65%:20%)混合曝气用于产生内源电子受体时,最佳硝化时间均为12 h,可将液相中的氨氮分别由初始的(113.16±0.85)mg/L、(117.18±4.39)mg/L、(129.48±4.85)mg/L及(142.53±0)mg/L降至(0.74±0.41)mg/L、(0.45±0.15)mg/L、(0.41±0.15)mg/L及(0.38±0.08)mg/L;同时,硝酸盐氮分别由初始的(7.48±7.91)mg/L、(12.87±5.81)mg/L、(12.87±5.81)mg/L及(13.55±6.18)mg/L升为(128.37±11.03)mg/L、(141.43±12.71)mg/L、(148.01±14.84)mg/L及(146.22±7.53)mg/L。内源电子受体可将重力浓缩过程中释磷量分别削减85%、63%、64%及83%,同时使得由生产废水回流引起的氨氮积累量分别减少89.25%、69.93%、74.31%及85.40%。在整个内源电子受体产生及其应用于抑制污泥释磷阶段,TN去除率分别为39.59%、44.54%、51.86%及57.33%。上述内源电子受体胁迫条件下的浓缩过程中,不仅可以有效降低由重力浓缩释磷引起的磷积累量,且可同步实现减少由生产废水回流引起的氨氮积累量。
  • 加载中
  • [1] Jardin Norbert, H. Johannes Popel. Phosphate release of sludges from enhanced biological p-removal during digestion. Wat. Sci. Tech., 1994, 30(6):281-292
    [2] Liu Sitong, Harald Horn. Effects of Fe(II) and Fe(III) on the single-stage deammonification process treating high-strength reject water from sludge dewatering. Bioresource Technology, 2012, 114:12-19
    [3] Guo C.H., Stabnikov V., Ivanov V. The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresource Technology, 2010, 101(11):3992-3999
    [4] Kroiss H., Negm M. The effect of nitrate and treatment process on phosphate release in batch gravity thickener. Water Research, 1994, 28(10):2209-2217
    [5] 王莉, 杨永哲, 李林辉,等. 电子受体对富磷污泥重力浓缩过程中释磷的影响. 中国给水排水, 2010, 26(19):1-4 Wang L., Yang Y. Z., Li L. H., et al. Effect of electron acceptor on anaerobic phosphorus release during gravity thickening of phosphorus-rich excess sludge. China Water & Wastewater, 2010, 26(19):1-4(in Chinese)
    [6] 李林辉, 杨永哲, 孙红芳,等. 内源电子受体对剩余污泥释磷行为的影响. 环境工程学报, 2012, 6(7):2276-2280 Li L. H., Yang Y. Z., Sun H. F., et al. Effect of in-stream acceptor on phosphorus release behaviour of excess activated sludge. Chinese Journal of Environmental Engineering, 2012, 6(7):2276-2280(in Chinese)
    [7] Battistoni P., Pavan P., Prisciandaro M., et al. Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Research, 2000, 34(11):3033-3041
    [8] Sibel U. D., Maazuza O. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation. Bioresource Technology, 2009, 100(13):3236-3244
    [9] Christian Fux, Boehler M., Philipp Huber, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology, 2002, 99(3):295-306
    [10] Sandra M., Joan Dosta, Alexandre G., et al. Optimization of biological nitrogen removal via nitrite in a SBR treating supernatant from the anaerobic digestion of municipal solid wastes. Ind. Eng. Chem. Res., 2006, 45(8):2787-2792
    [11] Li Z.G., Ma Y.G., Hira D., et al. Factors affecting the treatment of reject water by the anammox process. Bioresource Technology, 2011, 102(10):5702-5708
    [12] Dosta J., Gali A., Benabdallah E. H. T., et al. Operation and model description of a sequencing batch reactor treating reject water for biological nitrogen removal via nitrite. Bioresource Technology, 2007, 98(11):2065-2075
    [13] Gali A.,Dosta J., van Loosdrecht M. C. M., et al. Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry, 2007, 42(4):715-720
    [14] Pitman A.R., Deacon S. L., Alexander W.V. The thickening and treatment of sewage sludges to minimize phosphorus release. Water Research, 1991, 25(10):1285-1294
    [15] Ghyoot W., Vandaele S., Verstraete W. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor. Water Research,1999, 33(1):23-32
    [16] Johansson P., Nyberg A., Beier M., et al. Cost Efficient Sludge Liquor Treatment. Nowy Targ: Proceedings of a Polish-Swedish Seminar, 1998
    [17] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社,2002
    [18] Jordi Mas-Castells, Ricardo Guerrcro. Poly-β-hydroxyalkanoate determination in bacteria from aquatic samples. Journal of Microbiological Methods, 1995,22(2):151-164
    [19] Bo Frolund, Rikke Palmgren,Keiding K., et al. Extraction of extracelluar polymers from activated sludge using a cation exchange resin. Water Research, 1996, 30(8): 1749-1758
    [20] 万琼. 城市污水厂污泥水处理及生物添加强化脱氮中试研究. 西安: 西安建筑科技大学博士学位论文, 2011 Wan Q. A pilot study on reject water treatment and enhancing nitrification in wastewater treatment process through bioaugmentation. Xi'an: Doctoral Dissertation of Xi'an University of Architecture and Technology, 2011(in Chinese)
    [21] Hellinga C., Schellen A.A.J.C., Mulder J.W., et al. The Sharon process: An innovative method for nitrogen removal from ammonium-rich wastewater. Water Sciearch Tech., 1998, 37(9):135-142
    [22] Fux C., Velten S., Carozzi V., et al. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Water Research, 2006, 40(14):2765-2775
  • 加载中
计量
  • 文章访问数:  1925
  • HTML全文浏览数:  1060
  • PDF下载数:  653
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-07-05
  • 刊出日期:  2014-09-04
李维, 杨永哲. 内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用[J]. 环境工程学报, 2014, 8(9): 3743-3748.
引用本文: 李维, 杨永哲. 内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用[J]. 环境工程学报, 2014, 8(9): 3743-3748.
Li Wei, Yang Yongzhe. In-stream electron acceptor generation and its application in inhibiting P-release behavior of P-rich excess activated sludge[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3743-3748.
Citation: Li Wei, Yang Yongzhe. In-stream electron acceptor generation and its application in inhibiting P-release behavior of P-rich excess activated sludge[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3743-3748.

内源电子受体产生及其在抑制富磷剩余污泥释磷行为中的应用

  • 1.  西安建筑科技大学环境与市政工程学院, 西安 710055
  • 2.  新疆市政建筑设计研究院有限公司, 乌鲁木齐 830063
基金项目:

高等学校博士学科点专项科研基金(20116120110008)

陕西省自然科学基础研究计划重点项目(2010JZ008)

摘要: 根据生物脱氮除磷系统产生的富磷剩余污泥含有硝化细菌和生产废水含有高浓度氨氮的特点,将生产废水中的氨氮转化为硝酸盐(内源电子受体),并将获得的内源电子受体利用在富磷剩余污泥浓缩过程,同步实现内源电子受体反硝化及其抑制富磷剩余污泥释磷行为。结果表明,将富磷剩余污泥(excess activated sludge,EAS。EAS1是在好氧方式下添加,EAS2是在缺氧方式下添加)与生产废水(reject water)按4种比例(Ⅰ、生产废水:EAS1:EAS2=15%:85%:0%;Ⅱ、生产废水:EAS1:EAS2=15%:80%:5%;Ⅲ、生产废水:EAS1:EAS2=15%:75%:10%;Ⅳ、生产废水:EAS1:EAS2=15%:65%:20%)混合曝气用于产生内源电子受体时,最佳硝化时间均为12 h,可将液相中的氨氮分别由初始的(113.16±0.85)mg/L、(117.18±4.39)mg/L、(129.48±4.85)mg/L及(142.53±0)mg/L降至(0.74±0.41)mg/L、(0.45±0.15)mg/L、(0.41±0.15)mg/L及(0.38±0.08)mg/L;同时,硝酸盐氮分别由初始的(7.48±7.91)mg/L、(12.87±5.81)mg/L、(12.87±5.81)mg/L及(13.55±6.18)mg/L升为(128.37±11.03)mg/L、(141.43±12.71)mg/L、(148.01±14.84)mg/L及(146.22±7.53)mg/L。内源电子受体可将重力浓缩过程中释磷量分别削减85%、63%、64%及83%,同时使得由生产废水回流引起的氨氮积累量分别减少89.25%、69.93%、74.31%及85.40%。在整个内源电子受体产生及其应用于抑制污泥释磷阶段,TN去除率分别为39.59%、44.54%、51.86%及57.33%。上述内源电子受体胁迫条件下的浓缩过程中,不仅可以有效降低由重力浓缩释磷引起的磷积累量,且可同步实现减少由生产废水回流引起的氨氮积累量。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回