基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙

李慧星, 张建华, 毛忠贵. 基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙[J]. 环境工程学报, 2014, 8(9): 3737-3742.
引用本文: 李慧星, 张建华, 毛忠贵. 基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙[J]. 环境工程学报, 2014, 8(9): 3737-3742.
Li Huixing, Zhang Jianhua, Mao Zhonggui. Coupling of artificial neural network and genetic algorithms for methyl orange decolorization with manganese peroxidase[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3737-3742.
Citation: Li Huixing, Zhang Jianhua, Mao Zhonggui. Coupling of artificial neural network and genetic algorithms for methyl orange decolorization with manganese peroxidase[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3737-3742.

基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙

  • 基金项目:

    江苏省科技支撑计划(BE2011623)

    江苏省科技研究项目(2012047)

  • 中图分类号: X172

Coupling of artificial neural network and genetic algorithms for methyl orange decolorization with manganese peroxidase

  • Fund Project:
  • 摘要: 基于锰过氧化物酶(MnP)氧化脱色偶氮类染料的原理,实验研究MnP对甲基橙的脱色工艺,采用人工神经网络(ANN)和遗传算法(GA)建立脱色模型并优化工艺。建立的ANN模型的误差、相关系数、均方根误差和绝对平均偏差分别为0.0009、0.9971、1.21和6.82,模型有效且能够用于预测和工艺优化。采用GA对ANN模型进行数值寻优,得到的最佳工艺条件为酶液量0.6 mL,Mn2+浓度4 mmol/L,H2O2浓度0.49 mmol/L。该条件下脱色率达到(90.74±0.59)%。ANN耦合GA有效地建立了锰过氧化物酶脱色甲基橙的模型,并优化了工艺参数,为甲基橙脱色的研究提供一定参考。
  • 加载中
  • [1] Husain Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Critical Reviews in Biotechnology, 2006, 26(4):201-221
    [2] Singh K., Arora S. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 2011, 41(9):807-878
    [3] 姚超,曾永斌,曹燕媛,等.聚苯胺/凹凸棒石纳米复合材料对甲基橙的吸附性能. 硅酸盐学报,2010,38(4):671-677 Yao C., Zeng Y. B., Cao Y. Y., et al. Adsorption of methyl orange on polyaniline/attapulgite nanocomposites. Journal of the Chinese Ceramic Society, 2010, 38(4):671-677(in Chinese)
    [4] 王娟,申婷婷,李小明,等.Fe(Ⅱ)EDTA/H2O2电催化降解甲基橙模拟废水的研究. 环境工程学报,2010,4(4):833-838 Wang J., Shen T. T., Li X. M., et al. Electro-catalytic degradation of simulatedmethyl orange wastewater by Fe(Ⅱ) EDTA /H2O2. Chinese Journal of Environmental Engineering, 2010, 4(4):833-838(in Chinese)
    [5] 周许林,徐培君,吴高明,等.钢渣制光催化剂降解甲基橙的性能研究. 环境工程学报,2011,5(3):557-562 Zhou X. L., Xu P. J., Wu G. M., et al. Study on photocatalytic degradation of methyl orange with photocatalyst prepared by steel slag. Chinese Journal of Environmental Engineering, 2011, 5(3):557-562(in Chinese)
    [6] Murugesan K., Dhamija A., Nam I. H., et al. Decolourization of reactive black 5 by laccase: Optimization by response surface methodology. Dyes and Pigments, 2007, 75(1):176-184
    [7] Winquist E., Moilanen U., Mettälä A., et al. Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochemical Engineering Journal, 2008, 42(2):128-132
    [8] Hofrichter M. Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology,2002, 30(4):454-466
    [9] 唐文忠,荚荣,张良璞,等.裂褶菌F17对偶氮染料刚果红的脱色降解及其产物分析.环境科学学报, 2007,27(9):1451-1457 Tang W. Z., Jia R., Zhang L. P., et al. Decolorization and degradation of Congo Red by Schizophyllum sp. F17 and catabolite analysis. Acta Scientiae Circumstantiae, 2007, 27(9):1451-1457(in Chinese)
    [10] Mielgo I., López C., Moreira M. T., et al. Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnology Progress, 2003, 19(2):325-331.
    [11] Li X. D., Jia R., Li P. S., et al. Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(1):1-6
    [12] 李慧星,许彬,肖连冬,等.基于BP神经网络研究儿茶素在ADS-8树脂固定床的吸附过程. 离子交换与吸附,2007,27(2):177-182 Li H. X., Xu B., Xiao L. D., et al. Studies on adsorption of catechin by a fixed bed packed with macroporous resin ADS-8 based on BP neural network. Ion Exchange and Adsorption, 2011, 27(2):177-182(in Chinese)
    [13] Schubert M., Muffler A., Mourad S. The use of a radial basis neural network and genetic algorithm for improving the efficiency of laccase-mediated dye decolourization. Journal of Biotechnology,2012, 161(4):429-436
    [14] Yousefi V., Kariminia H. R. Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase. International Biodeterioration & Biodegradation, 2010, 64(3):245-252
    [15] Bingöl D., Hercan M., Elevli S., et al. Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresource Technology,2012, 112(5):111-115
    [16] Nelofer R., Ramanan R. N., Rahman R. N. Z. R. A., et al. Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E.coli BL21. Journal of Industrial Microbiology & Biotechnology,2012, 39(2):243-254
    [17] 雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用(第1版).西安:西安电子科技大学出版社,2005
    [18] 史峰,王小川,郁磊,等.Matlab神经网络30个案例分析(第1版).北京:北京航空航天大学出版社,2010
    [19] 薛刚,郭书贤.优化实验设计及统计分析法(第1版).武汉:湖北人民出版社,2004
  • 加载中
计量
  • 文章访问数:  1583
  • HTML全文浏览数:  924
  • PDF下载数:  739
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-06
  • 刊出日期:  2014-09-04
李慧星, 张建华, 毛忠贵. 基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙[J]. 环境工程学报, 2014, 8(9): 3737-3742.
引用本文: 李慧星, 张建华, 毛忠贵. 基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙[J]. 环境工程学报, 2014, 8(9): 3737-3742.
Li Huixing, Zhang Jianhua, Mao Zhonggui. Coupling of artificial neural network and genetic algorithms for methyl orange decolorization with manganese peroxidase[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3737-3742.
Citation: Li Huixing, Zhang Jianhua, Mao Zhonggui. Coupling of artificial neural network and genetic algorithms for methyl orange decolorization with manganese peroxidase[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3737-3742.

基于人工神经网络和遗传算法研究锰过氧化酶脱色甲基橙

  • 1.  江南大学工业生物技术教育部重点实验室, 无锡 214122
  • 2.  江南大学生物工程学院, 无锡 214122
基金项目:

江苏省科技支撑计划(BE2011623)

江苏省科技研究项目(2012047)

摘要: 基于锰过氧化物酶(MnP)氧化脱色偶氮类染料的原理,实验研究MnP对甲基橙的脱色工艺,采用人工神经网络(ANN)和遗传算法(GA)建立脱色模型并优化工艺。建立的ANN模型的误差、相关系数、均方根误差和绝对平均偏差分别为0.0009、0.9971、1.21和6.82,模型有效且能够用于预测和工艺优化。采用GA对ANN模型进行数值寻优,得到的最佳工艺条件为酶液量0.6 mL,Mn2+浓度4 mmol/L,H2O2浓度0.49 mmol/L。该条件下脱色率达到(90.74±0.59)%。ANN耦合GA有效地建立了锰过氧化物酶脱色甲基橙的模型,并优化了工艺参数,为甲基橙脱色的研究提供一定参考。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回