制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究

姜涛, 赵延华, 王鸿程. 制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究[J]. 环境工程学报, 2014, 8(10): 4326-4332.
引用本文: 姜涛, 赵延华, 王鸿程. 制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究[J]. 环境工程学报, 2014, 8(10): 4326-4332.
Jiang Tao, Zhao Yanhua, Wang Hongcheng. Research on modeling and optimization of UASB-HAR-ICEAS combined treatment system[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4326-4332.
Citation: Jiang Tao, Zhao Yanhua, Wang Hongcheng. Research on modeling and optimization of UASB-HAR-ICEAS combined treatment system[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4326-4332.

制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究

  • 基金项目:
  • 中图分类号: X52

Research on modeling and optimization of UASB-HAR-ICEAS combined treatment system

  • Fund Project:
  • 摘要: 以某制药废水的升流式厌氧污泥床(UASB)-水解酸化池(HAR)-间歇式循环延时曝气活性污泥法(ICEAS)新型组合处理系统为背景,分析该系统效能,并建立遗传算法优化神经网络(GA-BPNN)模型对系统出水水质进行仿真预测,并利用建立的GA-BPNN模型对系统的运行条件进行优化研究。研究表明,在稳态运行的120 d,系统对废水COD和NH3-N去除率分别为98.6%和86.6%;GA-BPNN模型对出水COD和NH3-N的预测结果和实际监测值之间的平均绝对百分误差为5.55%和6.99%,能很好地应用于组合系统的出水水质预测管理中;GA-BPNN模型还可求解出系统的最优化运行条件,为工程实际操作提供了坚实的理论基础。
  • 加载中
  • [1] 李宇庆,马楫,钱国恩.制药废水处理技术进展.工业水处理,2009,29(12):5-7 Li Yuqing,Ma Ji,Qian Guoen.Progress in the treatment technology of pharmaceutical wastewater.Industrial Water Treatment,2009,29(12):5-7(in Chinese)
    [2] Zhang Qing,Stanley S.J.Real-time water treatment process control with artificial neural network.Journal of Environmental Engineering,1999,125(2):153-160
    [3] Tan S.S,Smeins F.E.Predicting grassland community changes with an artificial neural network model.Ecological Modeling,1996,84(1-3):91-97
    [4] Lek S.,Guégan J.F.Artificial neural networks as a tool in ecological modeling,an introduction.Ecological Modeling,1999,120(2-3):65-73
    [5] 彭永臻,王之晖,王淑莹.基于BP神经网络的A/O脱氮系统外加碳源的仿真研究.化工学报,2005,56(2):296-300 Peng Yongzhen,Wang Zhihui,Wang Shuying.Simulation of external carbon addition to anoxic-oxic process based on back-propagation neural network.Journal of Chemical Industry and Engineering,2005,56(2):296-300(in Chinese)
    [6] 孙蔚旻,陈朱蕾,熊向阳,等.垃圾渗滤液生物处理系统BP人工神经网络模型.安全与环境工程,2004,11(4):46-48 Sun Weimin,Chen Zhulei,Xiong Xiangyang,et al.BP neural network model for the biological treatment of landfill leachate.Safety and Environmental Engineering,2004,11(4):46-48(in Chinese)
    [7] 付东王,王超,张倩,等.基于BP神经网络模型预测区域需水量.城市道桥与防洪,2011,(4):93-97 Fu Dongwang,Wang Chao,Zhang Qian,et al.Forecast of a real water demand based on BP Neural network model.Urban Roads Bridges and Flood Control,2011,(4):93-97(in Chinese)
    [8] Gholikandi G.B.,Khosravi M.Upgrading of submerged membrane bioreactor operation with regard to soluble microbial products and mathematical modeling for optimisation of critical flux.Desalination and Water Treatment,2012,39(1-3):199-208
    [9] 李伟奖,马邕文.基于模糊神经网络的造纸废水处理预测研究.造纸科学与技术,2010,29(1):80-83 Li Weijiang,Ma Yongwen.Study on the prediction of papermaking wastewater treatment process with fuzzy neural network.Paper Science and Technology,2010,29(1):80-83(in Chinese)
    [10] 张成甫.GA-BPNN在CASS工艺建模中的应用研究.成都:西南交通大学硕士学位论文,2010:32-41 Zhang Chengfu.Application research on GA-BPNN in cyclic activated sludge system model.Chengdu:Master Dissertation of Southwest Jiaotong University,2010:32-41(in Chinese)
    [11] 吉剑,刘峰,蒋京东,等.UASB反应器处理制药废水的研究.山西化工,2009,29(5):56-59 Ji Jian,Liu Feng,Jiang Jingdong,et al.Experimental study on high SO42- and high COD pharmaceutical wastewater with UASB.Shanxi Chemical Industry,2009,29(5):56-59(in Chinese)
    [12] 沈耀良,王宝贞.水解酸化工艺及其应用研究.哈尔滨建筑大学学报,1999,32(6):35-38 Shen Yaoliang,Wang Baozhen.Hydrolysis-acidogenosis process and its application and study.Journal of Harbin University of Civil Engineering and Architecture,1999,32(6):35-38(in Chinese)
    [13] 白利云,胡晓东,肖永生,等.水解酸化在高浓度制药废水处理中的应用性研究.广州大学学报,2007,6(2):47-51 Bai Liyun,Hu Xiaodong,Xiao Yongsheng,et al.Producing application of acidification process for pharmacy wastewater treatment.Journal of Guangzhou University (Natural Science Edition),2007,6(2):47-51(in Chinese)
    [14] Chen Zhaobo,Wang Hongcheng,Ren Nanqi,et al.Simultaneous removal and evaluation of organic substrates and NH3-N by a novel combined process in treating chemical synthesis-based pharmaceutical wastewater.Journal of Hazardous Materials,2011,(197):49-59
    [15] 程晓如,魏娜.SBR工艺研究进展.工业水处理,2005,25(5):10-13 Cheng Xiaoru,Wei Na.Research development of sequencing batch reactor activated sludge process.Industrial Water Treatment,2005,25(5):10-13(in Chinese)
    [16] 刘子旭,孙力平,李玉友,等.UASB启动及不同HRT对老龄垃圾渗滤液处理效果的影响.环境工程学报,2013,7(2):483-488 Liu Zixu,Sun Liping,Li Yuyou,et al.Impact of UASB start-up and different HRT on treatment effect of old landfill leachate.Chinese Journal of Environmental Engineering,2013,7(2):483-488(in Chinese)
    [17] 祁佩时,丁雷,刘云芝.微氧水解酸化工艺处理高浓度抗生素废水.环境科学,2005,26(3):106-111 Qi Peishi,Ding Lei,Liu Yunzhi.Treating high strength antibiotic wastewater by micro-aerobic hydrolysis and acidification process.Environmental Science,2005,26(3):106-111(in Chinese)
  • 加载中
计量
  • 文章访问数:  1618
  • HTML全文浏览数:  948
  • PDF下载数:  735
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-11-04
  • 刊出日期:  2014-09-28
姜涛, 赵延华, 王鸿程. 制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究[J]. 环境工程学报, 2014, 8(10): 4326-4332.
引用本文: 姜涛, 赵延华, 王鸿程. 制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究[J]. 环境工程学报, 2014, 8(10): 4326-4332.
Jiang Tao, Zhao Yanhua, Wang Hongcheng. Research on modeling and optimization of UASB-HAR-ICEAS combined treatment system[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4326-4332.
Citation: Jiang Tao, Zhao Yanhua, Wang Hongcheng. Research on modeling and optimization of UASB-HAR-ICEAS combined treatment system[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4326-4332.

制药废水UASB-HAR-ICEAS组合处理系统效能建模及优化研究

  • 1. 工业和信息化部电子第五研究所分析中心环保技术部, 广州 510610
  • 2. 广州市环境保护工程设计院有限公司, 广州 510000
基金项目:

摘要: 以某制药废水的升流式厌氧污泥床(UASB)-水解酸化池(HAR)-间歇式循环延时曝气活性污泥法(ICEAS)新型组合处理系统为背景,分析该系统效能,并建立遗传算法优化神经网络(GA-BPNN)模型对系统出水水质进行仿真预测,并利用建立的GA-BPNN模型对系统的运行条件进行优化研究。研究表明,在稳态运行的120 d,系统对废水COD和NH3-N去除率分别为98.6%和86.6%;GA-BPNN模型对出水COD和NH3-N的预测结果和实际监测值之间的平均绝对百分误差为5.55%和6.99%,能很好地应用于组合系统的出水水质预测管理中;GA-BPNN模型还可求解出系统的最优化运行条件,为工程实际操作提供了坚实的理论基础。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回