生物炭对水中Pb(II)和Zn(II)的吸附特征

郭素华, 许中坚, 李方文, 许丹丹. 生物炭对水中Pb(II)和Zn(II)的吸附特征[J]. 环境工程学报, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
引用本文: 郭素华, 许中坚, 李方文, 许丹丹. 生物炭对水中Pb(II)和Zn(II)的吸附特征[J]. 环境工程学报, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
Guo Suhua, Xu Zhongjian, Li Fangwen, Xu Dandan. Adsorption of Pb(II),Zn(II) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
Citation: Guo Suhua, Xu Zhongjian, Li Fangwen, Xu Dandan. Adsorption of Pb(II),Zn(II) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723

生物炭对水中Pb(II)和Zn(II)的吸附特征

  • 基金项目:

    国家自然科学基金资助项目(20577008)

    湖南省自然科学基金资助项目(05JJ30017)

  • 中图分类号: X53

Adsorption of Pb(II),Zn(II) from aqueous solution by biochars

  • Fund Project:
  • 摘要: 选取花生壳和玉米秸秆为原材料,在不同温度下制备生物炭,与市售的银杉木炭一起作为吸附剂探究其对水溶液中Pb (II)和Zn(II)的吸附能力和特性。用FTIR和扫描电镜表征生物炭表面性质。实验考察了吸附时间、溶液初始pH、初始浓度对吸附的影响。结果表明,在室温25℃和pH 5.0条件下,生物炭对Pb(II)、Zn(II)的吸附量随时间的增加而增大,在24 h后基本达到平衡,并且生物炭对Pb(II)、Zn(II)的吸附动力学符合准二级动力学方程;溶液初始pH显著影响生物炭对Pb(II)和Zn(II)的吸附,其中对Pb(II)和Zn(II)的最佳吸附pH分别为5.0和6.0;花生壳生物炭和玉米秸秆生物炭对Pb(II)的等温吸附符合Langmuir模型和Freundlich模型,而对Zn(II) 的等温吸附Freundlich模型拟合效果更佳;银杉木炭对Pb(II) 和Zn(II)的等温吸附更适用于Langmuir模型。另外,随着生物炭制备时热解温度的升高,生物炭对Pb(II)和Zn(II)的吸附量增加,且各生物炭对Pb(II)的最大吸附量远大于其对Zn(II)的最大吸附量。不同生物炭对Pb(II)的吸附能力有明显差异,表现为:花生壳生物炭 >玉米秸秆炭 >银杉木炭,而对Zn(II)的吸附力差异不明显。
  • 加载中
  • [1] Lehmann J.,Joseph S.Biochar for Environmental Management:Science and Technology.London:Earthscan,2009
    [2] Glaser B.,Haumaier L.,Guggenberger G.,et al.The‘Terra Preta’phenomenon:A model for sustainable agriculture in the humid tropics.Naturwissenschaften,2001,88(1):37-41
    [3] Van Zwieten L.,Kimber S.,Morris S.,et al.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility.Plant and Soil,2010,327(1-2):235-246
    [4] 刘玉学,刘微,吴伟祥,等.土壤生物质炭环境行为与环境效应.应用生态学报,2009,20(4):977-982 Liu Yuxue,Liu Wei,Wu Weixiang,et al.Environmental behavior and effect of biomass-derived black carbon in soil:A review.Chinese Journal of Applied Ecology,2009,20(4):977-982(in Chinese)
    [5] 王萌萌,周启星.生物炭的土壤环境效应及其机制研究.环境化学,2013,32(5):768-780 Wang Mengmeng,Zhou Qixing.Environmental effects and their mechanisms of biochar applied to soils.Environmental Chemistry,2013,32(5):768-780(in Chinese)
    [6] Cheng C.H.,Lehmann J.,Thies J.E.,et al.Oxidation of black carbon by biotic and abiotic processes.Organic Geochemistry,2006,37(11):1477-1488
    [7] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展.环境化学,2011,30(8):1411-1421 Li Li,Liu Ya,Lu Yuchao,et al.Review on environmental effects and applications of biochar.Environmental Chemistry,2011,30(8):1411-1421(in Chinese)
    [8] Masulili A.,Utomo W.H.,Syechfani M.S.Rice husk biochar for rice based cropping system in acid soil 1.the characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in west kalimantan,Indonesia.Journal of Agricultural Science,2010,2(1):39-47
    [9] 张继义,蒲丽君,李根.秸秆生物碳质吸附剂的制备及其吸附性能.农业工程学报,2011,27(增刊2):104-109 Zhang Jiyi,Pu Lijun,Li Gen.Preparation of biochar adsorbent from straw and its adsorption capability.Transactions of the CSAE,2011,27(Supp.2):104-109(in Chinese)
    [10] Ho Y.S.,McKay G.Pseudo-second order model for sorption processes.Process Biochemistry,1999,34(5):451-465
    [11] Langmuir I.The constitution and fundamental properties of solids and liquids.II.LIQUIDS.Journal of the American Chemical Society,1917,39(9):1848-1906
    [12] 安增莉,侯艳伟,蔡超,等.水稻秸秆生物炭对Pb(II)的吸附特性.环境化学,2011,30(11):1851-1857 An Zengli,Hou Yanwei,Cai Chao,et al.Lead(II) adsorption characteristics on different biochars derived from rice straw.Environmental Chemistry,2011,30(11):1851-1857(in Chinese)
    [13] 许燕萍,谢祖彬,朱建国,等.制炭温度对玉米和小麦生物质炭理化性质的影响.土壤,2013,45(1):73-78 Xu Yanping,Xie Zubin,Zhu Jianguo,et al.Effects of pyrolysis temperature on physical and chemical properties of corn biochar and wheat biochar.Soils,2013,45(1):73-78(in Chinese)
    [14] Baldock J.A.,Smernik R.J.Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood.Organic Geochemistry,2002,33(9):1093-1109
    [15] 范鹏程,田静,黄静美,等.花生壳中纤维素和木质素含量的测定方法.重庆科技学院学报(自然科学版,2008,10(5):64-65,67 Fan Pengcheng,Tian Jing,Huang Jingmei,et al.On the determination of cellulose and lignin of peanut shells.Journal of Chongqing University of Science and Technology:Natural Science Edition,2008,10(5):64-65,67(in Chinese)
    [16] 王金主,王元秀,李峰,等.玉米秸秆中纤维素-半纤维素和木质素的测定.山东食品发酵,2010,(3):44-47 Wang Jinzhu.,Wang Yuanxiu,Li Feng,et al.Determination of cellulose,hemicellulose and lignin in corn stalk.Shandong Food Ferment,2010,(3):44-47(in Chinese)
    [17] Demirbas A.Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues.Journal of Analytical and Applied Pyrolysis,2004,72(2):243-248
    [18] Lehmann J.A handful of carbon.Nature,2007,447(7141):143-144
    [19] Xu Xiaoyun,Cao Xinde,Zhao Ling,et al.Removal of Cu,Zn,and Cd from aqueous solutions by the dairy manure-derived biochar.Environmental Science and Pollution Research,2013,20(1):358-368
    [20] 王亚非,田豫川,刘越,等.利用城市污水厂剩余污泥制备生物炭吸附镉.四川环境,2012,31(5):12-15 Wang Yafei,Tian Yuchuan,Liu Yue,et al.Cadmium adsorption of urban sewage plant excess sludge derived bio-char.Sichuan Environment,2012,31(5):12-15(in Chinese)
    [21] Mohsen J.,Fathemeh A.Sunflower stalk,an agricultural waste,as an adsorbent for the removal of lead and cadmium from aqueous solutions.Journal of Material Cycles and Waste Management,2013,15(4):548-555
    [22] Borchard N.,Prost K.,Kautz T.,et al.Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure.European Journal of Soil Science,2012,63(3):399-409
    [23] Oh T.K.,Choi B.,Shinogi Y.,et al.Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase.Water,Air,& Soil Pollution,2012,223(7):3729-3738
    [24] Qiu Yuping,Cheng Haiyan,Xu Chao,et al.Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption.Water Research,2008,42(3):567-574
  • 加载中
计量
  • 文章访问数:  2388
  • HTML全文浏览数:  1588
  • PDF下载数:  661
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-07-06
  • 刊出日期:  2015-07-02
郭素华, 许中坚, 李方文, 许丹丹. 生物炭对水中Pb(II)和Zn(II)的吸附特征[J]. 环境工程学报, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
引用本文: 郭素华, 许中坚, 李方文, 许丹丹. 生物炭对水中Pb(II)和Zn(II)的吸附特征[J]. 环境工程学报, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
Guo Suhua, Xu Zhongjian, Li Fangwen, Xu Dandan. Adsorption of Pb(II),Zn(II) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723
Citation: Guo Suhua, Xu Zhongjian, Li Fangwen, Xu Dandan. Adsorption of Pb(II),Zn(II) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3215-3222. doi: 10.12030/j.cjee.20150723

生物炭对水中Pb(II)和Zn(II)的吸附特征

  • 1. 湖南科技大学化学化工学院, 湘潭 411201
基金项目:

国家自然科学基金资助项目(20577008)

湖南省自然科学基金资助项目(05JJ30017)

摘要: 选取花生壳和玉米秸秆为原材料,在不同温度下制备生物炭,与市售的银杉木炭一起作为吸附剂探究其对水溶液中Pb (II)和Zn(II)的吸附能力和特性。用FTIR和扫描电镜表征生物炭表面性质。实验考察了吸附时间、溶液初始pH、初始浓度对吸附的影响。结果表明,在室温25℃和pH 5.0条件下,生物炭对Pb(II)、Zn(II)的吸附量随时间的增加而增大,在24 h后基本达到平衡,并且生物炭对Pb(II)、Zn(II)的吸附动力学符合准二级动力学方程;溶液初始pH显著影响生物炭对Pb(II)和Zn(II)的吸附,其中对Pb(II)和Zn(II)的最佳吸附pH分别为5.0和6.0;花生壳生物炭和玉米秸秆生物炭对Pb(II)的等温吸附符合Langmuir模型和Freundlich模型,而对Zn(II) 的等温吸附Freundlich模型拟合效果更佳;银杉木炭对Pb(II) 和Zn(II)的等温吸附更适用于Langmuir模型。另外,随着生物炭制备时热解温度的升高,生物炭对Pb(II)和Zn(II)的吸附量增加,且各生物炭对Pb(II)的最大吸附量远大于其对Zn(II)的最大吸附量。不同生物炭对Pb(II)的吸附能力有明显差异,表现为:花生壳生物炭 >玉米秸秆炭 >银杉木炭,而对Zn(II)的吸附力差异不明显。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回