双重抑制下亚硝化系统的启动及运行特性

王博, 姚倩, 彭党聪, 李惠娟, 王玉, 侯艳红. 双重抑制下亚硝化系统的启动及运行特性[J]. 环境工程学报, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064
引用本文: 王博, 姚倩, 彭党聪, 李惠娟, 王玉, 侯艳红. 双重抑制下亚硝化系统的启动及运行特性[J]. 环境工程学报, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064
WANG Bo, YAO Qian, PENG Dangcong, LI Huijuan, WANG Yu, HOU Yanhong. Start-up and operating performance of nitritation system with dual inhibition[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064
Citation: WANG Bo, YAO Qian, PENG Dangcong, LI Huijuan, WANG Yu, HOU Yanhong. Start-up and operating performance of nitritation system with dual inhibition[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064

双重抑制下亚硝化系统的启动及运行特性

  • 基金项目:

    陕西省科技统筹创新重大项目(2011KTZB-03-03-03)

  • 中图分类号: X703

Start-up and operating performance of nitritation system with dual inhibition

  • Fund Project:
  • 摘要: 采用连续进水(feed-batch)方式的SBR,在高氨氮负荷(1 kg·(m3·d)-1)和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明,在温度(35±1)℃,进水氨氮浓度为1 000 mg·L-1的条件下,对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16 mg·(g·h)-1(以MLVSS计)降到0.3 mg·(g·h)-1(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO2--N平均浓度为466.45 mg·L-1,NO2--N/NH4+-N接近1,NO3--N浓度低于20 mg·L-1,满足厌氧氨氧化(ANAMMOX)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰,最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。
  • 加载中
  • [1] TSUSHIMA I, OGASAWARA Y, KINDAICHI T, et al. Development of high-rate anaerobic ammonium-oxidizing (anammox)biofilm reactors[J]. Water Research, 2007, 41(8):1623-1634
    [2] TANG Chongjian, ZHENG Ping, WANG Caihua, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1):135-144
    [3] GUT L, PŁAZA E, TRELA J, et al. Combined partial nitritation/Anammox system for treatment of digester supernatant[J]. Water Science and Technology, 2006, 53(12):149-159
    [4] YAMAMOTO T, TAKAKI K, KOYAMA T, et al. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox[J]. Bioresource Technology, 2008, 99(14):6419-6425
    [5] VAN DONGEN U, JETTEN M S, VAN LOOSDRECHT M C. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Science and Technology, 2001, 44(1):153-160
    [6] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5):589-596
    [7] CHO S, FUJII N, LEE T, et al. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor[J]. Bioresource Technology, 2011, 102(2):652-659
    [8] DO H, LIM J, SHIN S G, et al. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(11):1331-1338
    [9] VILLAVERDE S, GARCÍA-ENCINA P A, FDZ-POLANCO F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Research, 1997, 31(5):1180-1186
    [10] SURMACZ-GÓRSKA J, CICHON A, MIKSCH K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter a nitrification and denitrification[J]. Water Science and Technology, 1997, 36(10):73-78
    [11] MÜNCH E V, LANT P, KELLER J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Science, 1996, 30(2):277-284
    [12] 王志盈, 刘超翔, 彭党聪, 等. 高氨浓度下生物流化床内亚硝化过程的选择特性研究[J]. 西安建筑科技大学学报, 2000, 32(1):1-3
    [13] TURK O, MAVINIC D S. Maintaining nit rite build-up in a system acclimated to free ammonia[J]. Water Science, 1989, 23(11):1383-1388
    [14] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal (Water Pollution Control Federation), 1976, 48(5):835-852
    [15] 江平. 荧光原位杂交技术及其在环境微生物学中的应用[J]. 能源与环境, 2006(3):34-35
    [16] 王建龙, 吴立波, 齐星, 等. 用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J]. 环境科学学报, 1999, 19(3):225-229
    [17] AMANN R I, BINDER B J, OLSON R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations[J]. Applied and Environmental Microbiology, 1990, 56(6):1919-1925
    [18] DAIMS H, BRÜHL A, AMANN R, et al. The domain-specific probe EUB 338 is insufficient for the detection of all bacteria:Development and evaluation of a more comprehensive probe set[J]. Systematic and Applied Microbiology, 1999, 22(3):434-444
    [19] MOBARRY B K, WAGNER M, URBAIN V, et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J]. Applied and Environmental Microbiology, 1996, 62(6):2156-2162
    [20] WAGNER M, RATH G, AMANN R, et al. In situ identification of ammonia-oxidizing bacteria[J]. Systematic and Applied Microbiology, 1995, 18(2):251-264
    [21] JURETSCHKO S, TIMMERMANN G, SCHMID M, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations[J]. Applied and Environmental Microbiology, 1998, 64(8):3042-3051
    [22] ADAMCZYK J, HESSELSOE M, IVERSEN N, et al. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function[J]. Applied and Environmental Microbiology, 2003, 69(11):6875-6887
    [23] DAIMS H, NIELSEN J L, NIELSEN P H, et al. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants[J]. Applied and Environmental Microbiology, 2001, 67(11):5273-5284
    [24] WAGNER M, RATH G, KOOPS H P, et al. In situ analysis of nitrifying bacteria in sewage treatment plants[J]. Water Science and Technology, 1996, 34(1/2):237-244
    [25] SCHRAMM A, DE BEER D, VAN DEN HEUVEL J C, et al. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. Along a macroscale gradient in a nitrifying bioreactor:Quantification by in situ hybridization and the use of microsensors[J]. Applied and Environmental Microbiology, 1999, 65(8):3690-3696
    [26] SCHRAMM A, DE BEER D, GIESEKE A, et al. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm[J]. Environmental Microbiology, 2000, 2(6):680-686
    [27] VADIVELU V M, YUAN Zhiguo, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched nitrobacter culture[J]. Environmental Science & Technology, 2006, 40(14):4442-4448
    [28] OKABE S, OSHIKI M, TAKAHASHI Y, et al. Development of long-term stable partial nitrification and subsequent anammox process[J]. Bioresource Technology, 2011, 102(13):6801-6807
    [29] BURRELL P, KELLER J, BLACKALL L L. Characterisation of the bacterial consortium involved in nitrite oxidation in activated sludge[J]. Water Science and Technology, 1999, 39(6):45-52
  • 加载中
计量
  • 文章访问数:  2171
  • HTML全文浏览数:  1824
  • PDF下载数:  330
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-01
  • 刊出日期:  2017-03-10
王博, 姚倩, 彭党聪, 李惠娟, 王玉, 侯艳红. 双重抑制下亚硝化系统的启动及运行特性[J]. 环境工程学报, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064
引用本文: 王博, 姚倩, 彭党聪, 李惠娟, 王玉, 侯艳红. 双重抑制下亚硝化系统的启动及运行特性[J]. 环境工程学报, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064
WANG Bo, YAO Qian, PENG Dangcong, LI Huijuan, WANG Yu, HOU Yanhong. Start-up and operating performance of nitritation system with dual inhibition[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064
Citation: WANG Bo, YAO Qian, PENG Dangcong, LI Huijuan, WANG Yu, HOU Yanhong. Start-up and operating performance of nitritation system with dual inhibition[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1525-1532. doi: 10.12030/j.cjee.201511064

双重抑制下亚硝化系统的启动及运行特性

  • 1. 西安建筑科技大学环境与市政工程学院, 西安 710055
基金项目:

陕西省科技统筹创新重大项目(2011KTZB-03-03-03)

摘要: 采用连续进水(feed-batch)方式的SBR,在高氨氮负荷(1 kg·(m3·d)-1)和双重抑制下实现了亚硝化系统的启动及稳定运行。采用荧光原位杂交技术(FISH)对活性污泥中氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)种群及数量变化进行测定。结果表明,在温度(35±1)℃,进水氨氮浓度为1 000 mg·L-1的条件下,对NOB的抑制由游离亚硝酸(FNA)和DO的双重抑制转变为游离氨(FA)和DO的双重抑制,污泥亚硝酸盐氧化速率由28.16 mg·(g·h)-1(以MLVSS计)降到0.3 mg·(g·h)-1(以MLVSS计)以下,成功实现了高氨氮废水的稳定亚硝化。反应器出水NO2--N平均浓度为466.45 mg·L-1,NO2--N/NH4+-N接近1,NO3--N浓度低于20 mg·L-1,满足厌氧氨氧化(ANAMMOX)的进水基质要求。FISH结果表明,富集培养阶段AOB、NOB的优势种属由亚硝化单胞菌属(Nitrosomonas)及硝化螺旋菌属(Nitrospira)转变为Nitrosomonas及硝化杆菌属(Nitrobacter),抑制过程中NOB逐渐被淘汰,最终硝化菌以Nitrosomonas为主,从微生物学角度佐证了亚硝化的稳定运行。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回