水中磺胺对甲氧嘧啶抗生素的平面波导免疫传感器检测

黄鹏宇, 李奕君, 张天牧, 何苗, 汪恂. 水中磺胺对甲氧嘧啶抗生素的平面波导免疫传感器检测[J]. 环境化学, 2020, (2): 433-440. doi: 10.7524/j.issn.0254-6108.2019031104
引用本文: 黄鹏宇, 李奕君, 张天牧, 何苗, 汪恂. 水中磺胺对甲氧嘧啶抗生素的平面波导免疫传感器检测[J]. 环境化学, 2020, (2): 433-440. doi: 10.7524/j.issn.0254-6108.2019031104
HUANG Pengyu, LI Yijun, ZHANG Tianmu, HE Miao, WANG Xun. Detection of sulfameter in water by a planar waveguide immunosensor[J]. Environmental Chemistry, 2020, (2): 433-440. doi: 10.7524/j.issn.0254-6108.2019031104
Citation: HUANG Pengyu, LI Yijun, ZHANG Tianmu, HE Miao, WANG Xun. Detection of sulfameter in water by a planar waveguide immunosensor[J]. Environmental Chemistry, 2020, (2): 433-440. doi: 10.7524/j.issn.0254-6108.2019031104

水中磺胺对甲氧嘧啶抗生素的平面波导免疫传感器检测

  • 基金项目:

    广西重点研发计划(桂科AB17129007)和国家自然科学基金(51672196)资助.

Detection of sulfameter in water by a planar waveguide immunosensor

  • Fund Project: Supported by Key R & D programs in Guangxi(AB17129007)and the National Natural Science Foundation of China (51672196).
  • 摘要: 为满足对水中磺胺类抗生素磺胺对甲氧嘧啶(SMD)快速灵敏检测的需求,本研究基于间接竞争免疫反应原理,结合本课题组自主研发的平面波导免疫传感器,建立了快速检测水环境中的磺胺对甲氧嘧啶(SMD)抗生素的方法.研究结果表明,当抗体浓度优化为1.50 μg·mL-1、溶液pH值为中性时,磺胺对甲氧嘧啶(SMD)的检测限可至5.24 ng·L-1,定量检测区间为0.03 -1.37 μg·L-1,满足水中SMD抗生素的检测需求;四环素、林可霉素及双酚A三类典型污染物对SMD的检测无明显干扰,本方法具有良好的特异性和选择性,检测周期(包括检测及再生)仅20 min.传感芯片再生性研究表明,检测的核心单元免疫芯片可再生后重复使用,其检测性能在运行100个工作周期后无明显衰减.利用本方法对两种实际水样进行加标回收测试,回收率分别在86.3%-93.2%、86.7%-90.5%之间,相对标准偏差均小于10%.结果表明本方法可用于实际水中SMD的快速检测,同时为其它磺胺类抗生素快速灵敏检测方法的建立提供了参考.
  • 加载中
  • [1] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421-422:173-183.
    [2] YANG S, CHA J, CARLSON K. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1097(1):40-53.
    [3] BURKHARDT M, STAMM C, WAUL C, et al. Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland[J]. Journal of Environment Quality, 2005, 34(4):1363.
    [4] 李秀文, 何益得, 张巍, 等. 磺胺类抗生素对水环境的污染及生态毒理效应[J]. 环境科学与技术, 2018, 41(S1):68-73.

    LI X W,HE Y D,ZHANG W,et al. Pollution status of sulfonamides in aquatic environment and its ecotoxicological effects on aquatic organisms[J]. Environmental Science & Technology,2018,41(S1):68-73.(in Chinese).

    [5] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7):1491-1500.

    ZHANG G D,DONG W P,LIU X H,et al. Occurrence,fate and risk assessment of antibiotics in water environment of China[J].Environmental Chemistry,2018, 37(7):1491-1500(in Chinese).

    [6] 陈锡龙.HPLC法测定复方磺胺对甲氧嘧啶片中磺胺对甲氧嘧啶的含量[J].中国兽药杂志,2014,48(7):30-33.

    CHEN X L.Determination of sulfamethoxydiazine in compound sulfamethoxydiazine tablets by HPLC[J].Chinese Journal of Veterinary Drug,2014,48(7):30-33(in Chinese).

    [7] 王欣梅,徐桂菊,王晓利,等.三聚氰胺/邻苯二甲醛共价有机骨架材料结合固相萃取-液相色谱串联质谱检测环境水样中痕量磺胺类抗生素[J].分析化学,2018,46(12):1990-1996.

    WANG X M,XU G J,WNAG X L,et al.Melamine/o-phthalaldehyde covalent organic frameworks for solid phase extraction-liquid chromatography-tandem mass spectrometry analysis of sulfonamide antibiotics in environmental samples[J].Chinese Journal of Analytical Chemistry,2018,46(12):1990-1996(in Chinese).

    [8] 魏丽娟,任庆贤,宁春欢.系数倍率双波长紫外分光光度法测定复方磺胺对甲氧嘧啶钠注射液中TMP的含量[J].中国兽药杂志, 2002(11):30-31. WEI L J,REN Q X,NING Chun H,et al.Determination of compound sulfonamide by coefficient multiplication dual-wavelength ultraviolet spectrophotometry content of TMP in p-methoxypyromycin injection[J].Chinese Journal of Veterinary Drug,2002

    (11):30-31(in Chinese).

    [9] 申琳,柳青,陈巧梅,等.亚微米固定相毛细管电色谱法测定牛奶中磺胺类药物残留[J].分析试验室,2018,37(8):921-926.

    SHEN L,LIU Q,CHEN Q M,et al.Determination of sulfonamides in milk with pressurized capillary electrochromatography based on sub-micron stationary phase[J].Chinese Journal of Analysis Laboratory,2018,37(8):921-926(in Chinese).

    [10] 陈连颐, 王捍东, 王宗元. 酶联免疫吸附法检测磺胺对甲氧嘧啶残留[J]. 中国兽医学报, 2004, 24(4):375-378.

    CHEN L Y,WANG H D,WANG Z Y,et al.Study on the residue determination of sulfamethoxydiazine by ELISA[J]. Chinese Journal of Veterinary Science, 2004, 24(4):375-378(in Chinese).

    [11] 闫娜利. 化学发光酶免疫分析法测定磺胺对甲氧嘧啶[D]. 郑州:郑州大学, 2010. YAN N L.Chemiluminescence enzyme immunoassay for determination of SD-methoxy-pyrimidine[D].Zhengzhou:Zhengzhou University, 2010(in Chinese).
    [12] 叶必雄, 张岚. 环境水体及饮用水中抗生素污染现状及健康影响分析[J]. 环境与健康杂志, 2015, 32(2):173-178.

    YE B X,ZHANG L.Analysis of the pollution status and health risk of antibiotics in water environment and drinking water[J].Journal of Environment and Health, 2015, 32(2):173-178(in Chinese).

    [13] 赵涛, 丘锦荣, 蒋成爱, 等. 水环境中磺胺类抗生素的污染现状与处理技术研究进展[J]. 环境污染与防治, 2017(10):100-105. ZHAO T,QIU J R,JIANG C Ai,et al.Resrarch progress in pollution status and treatment technologies of sulfonamides in aquatic environment[J].Environmental Pollution and Rrevention, 2017

    (10):100-105(in Chinese).

    [14] 周巍,张巍,王赞,等.光纤倏逝波生物传感器在食品安全检测中应用进展[J].食品安全质量检测学报,2014,5(12):3971-3974.

    ZHOU W, ZHANG W, WANG Z,et al. Progress on fiber-optic evanescent wave biosensor technique in food safety detection[J].Food Safety and Quality Detection Technology,2014,5(12):3971-3974(in Chinese).

    [15] 李树莹, 田艳, 陈蓓, 等. 基于平面波导传感器的恩诺沙星与诺氟沙星同时检测方法[J]. 环境科学学报, 2018, 38(5):214-220.

    LI S Y,TIAN Y,CHEN B, et al.Simultaneous detection of enrofloxacin and norfloxacin by planar waveguide immunosensor[J].Acta Scientiae Circumstantiae, 2018, 38(5):214-220(in Chinese).

    [16] 徐玮琦, 张永明, 周小红, 等. 基于平面波导型荧光免疫传感器的双酚A检测适用性研究[J]. 环境科学, 2015, 36(1):338-342.

    XU W Q,ZHANG Y M,ZHOU X H, et al.Applicability of bisphenol a detecti biosensor onby a planar waveguide fluorescent[J]. Environmental Science, 2015, 36(1):338-342(in Chinese).

    [17] 宋保栋, 施汉昌, 何苗,等. 平面波导型荧光免疫传感器的制备与应用[J]. 分析化学, 2007, 35(3):461-465.

    SONG B D,SHI H C,HE M, et al.Developmen and test of the planar-waveguide fluorescent immuno-sensor[J]. Chinese Journal of Analytical Chemistry, 2007, 35(3):461-465(in Chinese).

    [18] LIU L H, ZHOU X H, LU M F, et al.An array fluorescent biosensor based on planar waveguide for multi-analyte determination in water samples[J]. Sensors & Actuators B Chemical, 2017, 240:107-113.
    [19] BALLESTEROS B, BARCELÓ SANCHEZ-BAEZA F, et al. Influence of the hapten design on the development of a competitive ELISA for the determination of the antifouling agent irgarol 1051 at trace levels[J]. Analytical Chemistry, 1998, 70(19):4004-4014.
    [20] MUJUMDAR B, ERNSTL A, MUJUMDAR SR, et al. Cyanine dye labeling reagents:Sulfoindocyanine succinimidyl esters.[J]. Bioconjug Chem, 1993, 4(2):105-111.
    [21] GRUBER H J, HAHN C D, KADA G, et al. Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin[J]. Bioconjug Chem, 2000, 11(5):696-704.
    [22] SOUTHWICK P L, ERNST L A, TAURIELLO E W, et al. Cyanine dye labeling reagents-carboxymethylindocyanine succinimidyl esters[J]. Cytometry, 1990, 11(3):418-430.
    [23] GUO H, ZHOU X, ZHANG Y, et al. Highly sensitive and rapid detection of melamine in milk products by planar waveguide fluorescence immunosensor (PWFI)[J]. Sensors and Actuators B:Chemical, 2014, 194:114-119.
    [24] MIDGLEY A R, NISWENDER G D, REBAR R W. Principles for the assessment of the reliability of radioimmunoassay methods (precision, accuracy, sensitivity, specificity)[J]. Acta endocrinologica. Supplementum, 1969, 142(1 Suppl):163-184.
    [25] 郭泓利,周小红,张岩,等.生物传感芯片界面免疫反应动力学的研究[J].海峡科技与产业,2017(6):162-165. GUO H L,ZHOU X H,ZHANG Y, et al.Study on the interface immunological reaction kinetics of biosensor chip[J].Technology and Industry Across the Straits,2017

    (6):162-165(in Chinese).

    [26] CAO Z, LU S, LIU J, et al. Preparation of anti-lomefloxacin antibody and development of an indirect competitive enzyme-linked immunosorbent assay for detection of lomefloxacin residue in milk[J]. Journal of Agricultural & Food Chemistry, 2011, 44(6):1100-1113.
    [27] LEI H, XUE G, YU C, et al. Fluorescence polarization as a tool for the detection of a widely used herbicide, butachlor, in polluted waters[J]. Analytical Methods, 2011, 3(10):2334-2340.
    [28] LIU L, ZHOU X, WILKINSON J S, et al. Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes:Optimization and Analysis[J]. Scientific Reports, 2017, 7(1):3655.
    [29] HAO X, ZHOU X, ZHANG Y, et al. Melamine detection in dairy products by using a reusable evanescent wave fiber-optic biosensor[J]. Sensors & Actuators B Chemical, 2014, 204:682-687.
    [30] GUO H, ZHOU X, ZHANG Y, et al. Highly sensitive and simultaneous detection of melamine and aflatoxin M1 in milk products by multiplexed planar waveguide fluorescence immunosensor (MPWFI).[J]. Food Chemistry, 2016, 197(Pt A):359-366.
    [31] 李伟,吴君,王浩宇,等.倏逝波免疫传感器超灵敏检测水样中的双酚A[J].环境化学,2018,37(2):347-352.

    LI W,WU J,WANG H Y,et al.Ultrasensitive detection of BPA in water using an evanescent wave immunosensor.[J].Environmental Chemistry,2018,37(2):347-352(in Chinese).

  • 加载中
计量
  • 文章访问数:  1831
  • HTML全文浏览数:  1831
  • PDF下载数:  35
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-11

水中磺胺对甲氧嘧啶抗生素的平面波导免疫传感器检测

  • 1. 武汉科技大学城市建设学院, 武汉, 430065;
  • 2. 清华大学环境学院, 北京, 100084
基金项目:

广西重点研发计划(桂科AB17129007)和国家自然科学基金(51672196)资助.

摘要: 为满足对水中磺胺类抗生素磺胺对甲氧嘧啶(SMD)快速灵敏检测的需求,本研究基于间接竞争免疫反应原理,结合本课题组自主研发的平面波导免疫传感器,建立了快速检测水环境中的磺胺对甲氧嘧啶(SMD)抗生素的方法.研究结果表明,当抗体浓度优化为1.50 μg·mL-1、溶液pH值为中性时,磺胺对甲氧嘧啶(SMD)的检测限可至5.24 ng·L-1,定量检测区间为0.03 -1.37 μg·L-1,满足水中SMD抗生素的检测需求;四环素、林可霉素及双酚A三类典型污染物对SMD的检测无明显干扰,本方法具有良好的特异性和选择性,检测周期(包括检测及再生)仅20 min.传感芯片再生性研究表明,检测的核心单元免疫芯片可再生后重复使用,其检测性能在运行100个工作周期后无明显衰减.利用本方法对两种实际水样进行加标回收测试,回收率分别在86.3%-93.2%、86.7%-90.5%之间,相对标准偏差均小于10%.结果表明本方法可用于实际水中SMD的快速检测,同时为其它磺胺类抗生素快速灵敏检测方法的建立提供了参考.

English Abstract

参考文献 (31)

目录

/

返回文章
返回