不同流速下零价铁调控污水管道节点硫转化的影响

卞爱琴, 远野, 付强, 张璐璐, 周飞, 陈正梁, 陈天明, 王爱杰, 丁成. 不同流速下零价铁调控污水管道节点硫转化的影响[J]. 环境化学, 2020, (1): 148-155. doi: 10.7524/j.issn.0254-6108.2019012801
引用本文: 卞爱琴, 远野, 付强, 张璐璐, 周飞, 陈正梁, 陈天明, 王爱杰, 丁成. 不同流速下零价铁调控污水管道节点硫转化的影响[J]. 环境化学, 2020, (1): 148-155. doi: 10.7524/j.issn.0254-6108.2019012801
BIAN Aiqin, YUAN Ye, FU Qiang, ZHANG Lulu, ZHOU Fei, CHEN Zhengliang, CHEN Tianming, WANG Aijie, DING Cheng. Regulation of sulfur transformation of point source in sewage by zero-valent-iron under different flow rates[J]. Environmental Chemistry, 2020, (1): 148-155. doi: 10.7524/j.issn.0254-6108.2019012801
Citation: BIAN Aiqin, YUAN Ye, FU Qiang, ZHANG Lulu, ZHOU Fei, CHEN Zhengliang, CHEN Tianming, WANG Aijie, DING Cheng. Regulation of sulfur transformation of point source in sewage by zero-valent-iron under different flow rates[J]. Environmental Chemistry, 2020, (1): 148-155. doi: 10.7524/j.issn.0254-6108.2019012801

不同流速下零价铁调控污水管道节点硫转化的影响

    通讯作者: 远野, E-mail: yuanye_19840915@163.com 丁成, E-mail: ycdingc@163.com
  • 基金项目:

    国家自然科学基金(51608467)资助.

Regulation of sulfur transformation of point source in sewage by zero-valent-iron under different flow rates

    Corresponding authors: YUAN Ye, yuanye_19840915@163.com ;  DING Cheng, ycdingc@163.com
  • Fund Project: Supported by the Natural Science Foundation of China (51608467).
  • 摘要: 研究了不同污水流速下,各粒径零价铁(ZVI)对实际污水中硫化物(S2-)和硫化氢(H2S)浓度以及pH值的影响,并考察了不同污水流速下各粒径ZVI的损失量和消耗量.结果表明,当污水流速为0.2 m·s-1和0.6 m·s-1时,ZVI粒径越小,S2-和H2S的去除效果越好,其中R3-ZVI对S2-和H2S的控制效果最好,但其损失量和消耗量最高且pH偏高(分别为8.5和8.3),而R2-ZVI对S2-和H2S的控制效果与R3-ZVI接近且pH适中(分别为8.1和8.0),当污水流速提高至1.2 m·s-1时,R2-ZVI对S2-和H2S的控制效果最好且pH值适中(7.9),而R3-ZVI的损失量和消耗量因受水流速度影响而显著增加,从而导致其对S2-和H2S的控制效果降低,综合考虑,采用R2-ZVI控制污水中的S2-和H2S产生更经济有效.
  • 加载中
  • [1] PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science, 2014, 345(6198):812-814.
    [2] GRANDCLERC A, GUEGUEN-MINERBE M, NOUR I, et al. Impact of cement composition on the adsorption of hydrogen sulphide and its subsequent oxidation onto cementitious material surfaces[J]. Construction and Building Materials, 2017, 152:576-586.
    [3] KONG L, LIU C, CAO M, et al. Mechanism study of the role of biofilm played in sewage corrosion of mortar[J]. Construction and Building Materials, 2018, 164:44-56.
    [4]
    [5] GRENGG C, MITTERMAYR F, UKRAINCZYK N, et al. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion:A review[J]. Water Research, 2018, 134:341-352.
    [6] 黄建洪, 周新云, 周瑜, 等. 不同区域城市排水系统中H2S的溢出规律[J]. 环境化学, 2012, 31(10):1549-1554.

    HUANG J H, ZHOU X Y, ZHOU Y, et al. Overflow concentration of H2S in different regional cities' sewer systems[J]. Environmental Chemistry, 2012, 31(10):1549-1554(in Chinese).

    [7] CHEN D, SZOSTAK P. Factor analysis of H2S emission at a wastewater lift station:A case study[J]. Environmental Monitoring & Assessment, 2013, 185(4):3551-3560.
    [8] LIANG S, ZHANG L, JIANG F. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage[J]. Water Research, 2016, 100:421-428.
    [9] 金鹏康, 杨珍瑞, 李蓉, 等. 反硝化抑制硫酸盐还原的工艺特性[J]. 环境科学, 2017, 38(5):1982-1990.

    JIN P K, YANG Z R, LI R, et al. Characteristics of denitrification inhibiting sulfate reducing process[J]. Environmental Science, 2017, 38(5):1982-1990(in Chinese).

    [10] GANIGUE R, JIANG G, LIU Y, et al. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing[J]. Water Research, 2018, 135:302-310.
    [11] REBOSURA JR M, SALEHIN S, PIKAAR I, et al. A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes[J]. Water Research, 2018, 146:109-117.
    [12] JIANG G, KELLER J, BOND P L, et al. Predicting concrete corrosion of sewers using artificial neural network[J]. Water Research, 2016, 92:52-60.
    [13] LIU Y, GANIGUE R, SHARMA K, et al. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks[J]. Water Research, 2016, 98:376-383.
    [14] 王晓伟. 化学吸收-生物法烟气同步脱硫脱硝吸收液中SO42-和NO\|3的生物转化[D]. 大连:大连理工大学, 2016. WANG X W. Bioconversion of sulfate and nitrate in scrubbing liquor of chemical absorption-biological treatment intergrated flue gas simultaneous desulfurization and denitration process[D]. Dalian:Dalian University of Technology, 2016(in Chinese).
    [15] SHAMMAY A, SIVRET E C, LE-MINH N, et al. Review of odour abatement in sewer networks[J]. Journal of Environmental Chemical Engineering, 2016, 4(4):3866-3881.
    [16] LIU Y, WU C, ZHOU X, et al. Sulfide elimination by intermittent nitrate dosing in sewer sediments[J]. Journal of Environmental Sciences, 2015, 27:259-265.
    [17] 赵雅光, 万俊峰, 刘奉滨, 等. 零价铁(ZVI)治理水体砷污染研究进展[J]. 环境化学, 2013, 32(10):1943-1949.

    ZHAO Y G, WAN J F, LIU F B, et al. Application of zero-valent iron (ZVI) technology for arsenic rem oval from aqueous environment[J]. Environmental Chemistry, 2013, 32(10):1943-1949(in Chinese).

    [18] 鲍倩倩, 李锦祥, 关小红. 预磁化强化零价铁除偶氮染料的性能研究[J]. 环境化学, 2017, 36(7):1467-1473.

    BAO Q Q, LI J X, GUAN X H. Improving the reactivity of zerovalent iron toward various azo dyes by pre-magnetization[J]. Environmental Chemistry, 2017, 36(7):1467-1473(in Chinese).

    [19] 杨世迎, 杨鑫, 梁婷, 等. 零价铁还原和过硫酸盐氧化联合降解水中硝基苯[J]. 环境化学, 2012, 31(5):682-686.

    YANG S Y, YANG X, LIANG T, et al. Degradation of nitrobenzene by the combined system of zero-valent iron reduction and persulfate oxidation[J]. Environmental Chemistry, 2012, 31(5):682-686(in Chinese).

    [20] 于新, 豆小敏, 张艳素, 等. 反应条件对零价铁去除As(Ⅲ)动力学的影响[J]. 环境化学, 2011, 30(5):1011-1018.

    YU X, DOU X M, ZHANG Y S, et al. Effect of reaction conditions on the removal kinetics of As (Ш) by zero-valent iron[J]. Environmental Chemistry, 2011, 30(5):1011-1018(in Chinese).

    [21] 钟燕清, 张永清, 陈宪方, 等. 不同螯合剂对零价铁活化过硫酸盐降解对氯苯胺的影响[J]. 环境化学, 2015, 34(4):685-691.

    ZHONG Y Q, ZHANG Y Q, CHEN X F, et al. Effect of chelating agents on the degradation of p-chloroaniline in Fe0-persulfate system[J]. Environmental Chemistry, 2015, 34(4):685-691(in Chinese).

    [22] 上海市建设和交通委员会. 室外排水设计规范(GB50014-2006)[M]. 北京:中国计划出版社, 2014. Shanghai construction and transportation commission. Code for design of outdoor wastewater engineering(GB50014-2006)[M]. Beijing:China Planning Press, 2014.
    [23] APHA, AWWA, WEF. Standard methods for the examination of water and wastewater (21th ed.)[M]. Washington, DC:American Public Health Association, 2005.
    [24] 张团结. 城市排水管网恶臭发生影响因素研究[D]. 西安:长安大学, 2014. ZHANG T J. Study on the influencing factors of malodorous occurrence in the city sewer system[D]. Xi'an:Chang'an University, 2014(in Chinese).
    [25] LIU Y, ZHANG Y, NI B J. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors[J]. Water Research, 2015, 75:292-300.
    [26] ZHANG J, ZHANG Y, QUAN X, et al. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment[J]. Chemical Engineering Journal, 2011, 174(1):159-165.
    [27] 李欢旋, 万金泉, 马邕文, 等. 不同粒径零价铁活化过硫酸钠氧化降解酸性橙7的影响及动力学研究[J]. 环境科学, 2014,35(9):3422-3429.

    LI H X, WAN J Q, MA Y W, et al. Effects of particle size of zero-valent iron on the reactivity of activating persulfate and kinetics for the degradation of acid orange 7[J]. Environmental Science, 2014,35(9):3422-3429(in Chinese).

    [28] 徐浩. 零价铁强化厌氧处理煤化工费托合成废水的研究[D]. 哈尔滨:哈尔滨工业大学, 2016. XU H. Study of fischer-tropsch synthesis wasterwater treatment using anaerobic technology enhanced by dosing of ZVI[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
    [29]
  • 加载中
计量
  • 文章访问数:  1195
  • HTML全文浏览数:  1195
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-28
  • 刊出日期:  2020-01-01

不同流速下零价铁调控污水管道节点硫转化的影响

    通讯作者: 远野, E-mail: yuanye_19840915@163.com ;  丁成, E-mail: ycdingc@163.com
  • 1. 江苏大学环境与安全工程学院, 镇江, 212013;
  • 2. 盐城工学院环境科学与工程学院, 盐城, 224051;
  • 3. 中国科学院生态环境研究中心, 环境生物技术重点实验室, 北京, 100085;
  • 4. 江苏科易达环保科技有限公司, 盐城, 224007
基金项目:

国家自然科学基金(51608467)资助.

摘要: 研究了不同污水流速下,各粒径零价铁(ZVI)对实际污水中硫化物(S2-)和硫化氢(H2S)浓度以及pH值的影响,并考察了不同污水流速下各粒径ZVI的损失量和消耗量.结果表明,当污水流速为0.2 m·s-1和0.6 m·s-1时,ZVI粒径越小,S2-和H2S的去除效果越好,其中R3-ZVI对S2-和H2S的控制效果最好,但其损失量和消耗量最高且pH偏高(分别为8.5和8.3),而R2-ZVI对S2-和H2S的控制效果与R3-ZVI接近且pH适中(分别为8.1和8.0),当污水流速提高至1.2 m·s-1时,R2-ZVI对S2-和H2S的控制效果最好且pH值适中(7.9),而R3-ZVI的损失量和消耗量因受水流速度影响而显著增加,从而导致其对S2-和H2S的控制效果降低,综合考虑,采用R2-ZVI控制污水中的S2-和H2S产生更经济有效.

English Abstract

参考文献 (29)

目录

/

返回文章
返回