两种不同抗生素在沉积物中吸附的影响因素与模拟研究
Influencing factors and simulation of adsorption of two different antibiotics in sediments
-
摘要: 抗生素是环境中广泛存在的药物,其在水环境的迁移和分布主要受到沉积物吸附行为的影响.本文首先考察了高岭土、黑碳、腐殖酸、pH、Ca2+等5种影响因素对两种不同抗生素在沉积物上吸附强度的单因素影响,然后应用中心复合实验设计考察了其复合影响,并利用实验所得数据,分别拟合和验证了基于线性方程和BP神经网络的两种抗生素吸附模型,通过对比拟合和验证结果分别得到适用于两种抗生素的吸附模型.实验结果表明,pH和Ca2+对两种抗生素在沉积物上的吸附容量影响显著,而高岭土、黑碳和腐殖酸则影响较小.模型模拟结果表明,神经网络模型拟合程度和精度均优于线性方程模型;且交叉验证结果表明,利用不同组数据进行训练,神经网络模型拟合均取得了优于线性方程的拟合结果.因此,在所考察的因素和浓度范围内,神经网络模型较好地预测了沉积物中抗生素的吸附行为.Abstract: Antibiotics are widely presented in the environment. Their migration and distribution in the aquatic environment are mainly affected by the adsorption behavior of sediments. In this paper, the effects of kaolin, black carbon, humic acid, pH and Ca2+ on the adsorption strength of two different antibiotics on sediments were investigated. Then the central composite design was used to investigate the composite effect. According to the experimental data, multi linear equations and BP neural network were used to fit and validate two antibiotic adsorption models. The adsorption models for two antibiotics were obtained by comparison fitting and verification results. The results showed that the effect of pH and Ca2+ on the adsorption capacity of the two antibiotics on the sediment were significant, while the effect of kaolin, black carbon and humic acid on the adsorption capacity of the two antibiotics on the sediment were less. The model simulation results showed that the degree and accuracy of the neural network model were better than the multi linear equation, and the cross validation results also indicate that the neural network model stimulate was better than the multi linear equation. Therefore, the neural network model was able to predict the adsorption behavior of antibiotics in sediments within the factors and concentrations examined reasonably.
-
Key words:
- sulfamethoxazole /
- tetracycline /
- antibiotic /
- sediment /
- adsorption /
- influencing factors
-
[1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782. [2] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315. [3] LI S, SHI W Z, LIU W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas(2005-2016)[J]. Science of the Total Environment, 2018, 615:906-917. [4] 李彦文,莫测辉,赵娜,等.菜地土壤中磺胺类和四环素类抗生素污染特征研究[J].环境科学,2009,50(6):1762-1766. LI Y W, MO C H, ZHAO N, et al. Study on pollution characteristics of sulfonamides and tetracyclines in vegetable soil[J]. Environmental Science, 2009, 50(6):1762-1766(in Chinese).
[5] WANG P, ZHANG D, ZHANG H, et al. Impact of concentration and species of sulfamethoxazole and ofloxacin on their adsorption kinetics on sediments[J]. Chemosphere, 2017, 175:123-129. [6] SRINIVASAN P, SARMAH A K, MANLEY-HARRIS M. Co-contaminants and factors affecting the sorption behavior of two sulfonamides in pasture soils[J]. Environmental Pollution, 2013, 180:165-172. [7] ZHANG Z Y, SUN K, GAO B, et al. Adsorption of tetracycline on soil and sediment:Effects of pH and the presence of Cu(Ⅱ)[J]. Journal of Hazardous Materials, 2011, 190(1-3):856-862. [8] LERTPAITOONPAN W, ONG S. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76(4):558-564. [9] ZHOU J, BROODBANK N. Sediment-water interactions of pharmaceutical residues in the river environment[J]. Water Research, 2014, 48:61-70. [10] AL-KHAZRAJY O S A, BOXALL A B A. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems[J]. Journal of Hazardous Materials, 2016, 317:198-209. [11] 张琛,刘建林,胡艳,等.BP神经网络模型在表层沉积物及其非残渣态组分吸附双酚A研究中的应用[J].地理科学,2010,30(3):435-440. ZHANG T, LIU J L, HU Y, et al. Application of BP neural network model in the study of adsorption of bisphenol A in surface sediments and its non-residual components[J]. Geographic Science, 2010, 30(3):435-440(in Chinese).
[12] BARRON L, HAVEL J, PURCELL M, et al. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks[J]. Analyst, 2009, 134(4):663-670. [13] 余绵梓,袁啸,李适宇,等.咖啡因在河流沉积物中吸附的影响因素及模拟研究[J].环境科学学报,2017,38(2):560-569. YU J Z, YUAN X, LI S Y, et al. Influencing factors and simulation of caffeine adsorption in river sediments[J]. Acta Scientiae Circumstantiae, 2017, 38(2):560-569(in Chinese).
[14] MELANIE K, GABRIEL S, FENG X, et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials[J]. Water Research, 2017, 124:673-692. [15] 邓丽萍,纪靓靓,白朝暾.二氧化锰改性碳纳米管对四环素和泰乐菌素的吸附[J].农业环境科学学报,2015,34(4):781-786. DENG L P, JI L L, BAI C D. Adsorption of tetracycline and tylosin by manganese dioxide modified carbon nanotubes[J]. Journal of Agricultural Environmental Science, 2015, 34(4):781-786(in Chinese).
[16] YI X, BAYEN S, KELLY B C, et al. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407(30):9071-9083. [17] OCAMPO-PÉREZ R, LEYVA-RAMOS R, RIVERA-UTRILLA J, et al. Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase[J]. Chemical Engineering Research & Design, 2015, 104:579-588. [18] 李燕.活性炭、高岭土对盐酸四环素的吸附行为研究[J].内蒙古煤炭经济,2018,3:133-135. LI Y. Adsorption behavior of activated carbon and kaolin on tetracycline hydrochloride[J]. Inner Mongolia Coal Economy, 2018 , 3:133-135(in Chinese).
[19] 孔露露,周启星.新制备生物炭的特性表征及其对石油烃污染土壤的吸附效果[J].环境工程学报,2015,9(5):2462-2468. KONG L L, ZHOU Q X. Characterization of new-prepared biochars and their adsorption effectiveness on petroleum hydrocarbon contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015, 9(5):2462-2468(in Chinese).
[20] KONG L L, GAO Y Y, ZHOU Q X, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy[J]. Journal of Hazardous Materials, 2018, 343(5):276-284. [21] 李蕊宁,王兆炜,郭家磊,等.酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J].环境科学学报,2017,37(11):4119-4128. LI R N, WANG Z W, GUO J L, et al. Study on adsorption performance of acid-base modified biochar for sulfathiazole in water[J]. Acta Scientiae Circumstantiae, 2017, 37(11):4119-4128(in Chinese).
[22] LEHMANN J, JOSEPH S. Biochar for environmental management:science and technology[M]. London:Earthscan Publications, 2009. [23] 王玉环,林青,徐绍辉.Cu2+存在下腐殖酸对磺胺嘧啶吸附解吸的影响[J].环境科学研究,2018,31(10):1795-1802. WANG Y H, LIN Q, XU S H. Effect of humic acid on adsorption and desorption of sulfadiazine in the presence of Cu2+[J]. Research of Environmental Sciences, 2018, 31(10):1795-1802(in Chinese).
[24] 汪华,方程冉,王群,等.腐殖酸对生物碳吸附四环素的影响[J].环境污染与防治,2018,40(4):423-428. WANG H, FANG C R, WANG Q, et al. Effect of humic acid on adsorption of tetracycline by biochar[J]. Environmental Pollution & Control, 2018, 40(4):423-428(in Chinese).
[25] XU X R, LI X Y. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 2010, 78(4):430-436. [26] PILS J V, LAIRD D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science & Technology, 2007, 41(6):1928-1933. [27] MANAGAKI S, MURATA A, TAKADA H. Distribution of macrolides sulfonamides and trimethoprim in tropical waters:Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science & Technology, 2007, 41(23):8004-8010. [28] 毛真,吴敏,张迪,等.磺胺甲恶唑在土壤上的吸附及其与Ca2+、Mg2+、Zn2+的共吸附[J].环境化学,2013,32(4):640-645. MAO Z, WU M, ZHANG D, et al. Adsorption of sulfamethoxazole on soil and co-adsorption with Ca2+, Mg2+ and Zn2+[J]. Environmental Chemistry, 2013, 32(4):640-645(in Chinese).
[29] ZHANG D, PAN B, WU M, et al. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions[J]. Environmental Pollution, 2011, 159(10):2616-2621. [30] EUGENIA P M, MARCELO J A, GISELA R P, et al. Influence of Ca2+ on tetracycline adsorption on montmorillonite[J]. Journal of Colloid and Interface Science, 2012, 368:420-426. [31] 李鱼,王志增,王檬,等.多种环境因子交互作用对沉积物吸附阿特拉津的影响[J].吉林大学学报,2013,3(2):334-339. LI Y, WANG Z Z, WANG M, et al. Effects of interactions of various environmental factors on the adsorption of atrazine on sediments[J]. Journal of Jilin University, 2013, 3(2):334-339(in Chinese).
[32] YANG Q Q, LI X G, CHEN G C, et al. Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution:Mechanistic study[J]. The Royal Society of Chemistry, 2016, 6:15184-15191. [33] ZHAO Y P, GENG J J, WANG X R, et al. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances[J]. Journal of Colloid and Interface Science, 2011, 361(1):247-251. [34] JI T L, LU S F, TANG M M, et al. Application of BP neural network model in fracturing productivity prediction of Fuyu Tight oil reservoir in Jilin Oilfield[J]. Acta Geologica Sinica, 2015, 89(1):154-155. [35] 王晓光.自适应BP神经网络在横波速度预测的应用[J].岩性油气管,2015,25(5):86-88. WANG X G. Application of adaptive BP neural network in shear wave velocity prediction[J]. Lithologic Reservoirs, 2015, 25(5):86-88(in Chinese).
计量
- 文章访问数: 1601
- HTML全文浏览数: 1601
- PDF下载数: 46
- 施引文献: 0