纳米二氧化钛对浮萍生长和生理特征的影响

刘爽, 郭雪莲, 郑荣波, 范峰华. 纳米二氧化钛对浮萍生长和生理特征的影响[J]. 生态毒理学报, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001
引用本文: 刘爽, 郭雪莲, 郑荣波, 范峰华. 纳米二氧化钛对浮萍生长和生理特征的影响[J]. 生态毒理学报, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001
Liu Shuang, Guo Xuelian, Zheng Rongbo, Fan Fenghua. Effects of TiO2-NPs on Growth and Physiological Characteristics of Lemna minor[J]. Asian journal of ecotoxicology, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001
Citation: Liu Shuang, Guo Xuelian, Zheng Rongbo, Fan Fenghua. Effects of TiO2-NPs on Growth and Physiological Characteristics of Lemna minor[J]. Asian journal of ecotoxicology, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001

纳米二氧化钛对浮萍生长和生理特征的影响

    作者简介: 刘爽(1995-),女,硕士研究生,研究方向为湿地生态学,E-mail:869086444@qq.com
    通讯作者: 郑荣波, E-mail: zhengrbzy@hotmail.com
  • 基金项目:

    云南省应用基础研究计划重点项目(202001AS070041);国家自然科学基金资助项目(41563008);云南省高原湿地保护修复与生态服务重点实验室开放基金(202105AG070002)

  • 中图分类号: X171.5

Effects of TiO2-NPs on Growth and Physiological Characteristics of Lemna minor

    Corresponding author: Zheng Rongbo, zhengrbzy@hotmail.com
  • Fund Project:
  • 摘要: 为了揭示纳米二氧化钛(TiO2-NPs)对水生植物生长和生理特征的影响,选取浮萍为受试物种,输入锐钛矿型、金红石型和P25混合型(m(锐钛矿):m(金红石)=4:1)3种晶型的TiO2-NPs,测定不同浓度(CK:0 mg·L-1,T25:25 mg·L-1,T50:50 mg·L-1,T75:75 mg·L-1,T100:100 mg·L-1)对浮萍叶片数、叶面积、叶绿素含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性的影响。结果表明:(1)锐钛矿处理中,不同浓度处理均抑制浮萍生长,T25和T50处理对叶绿素a含量产生抑制作用,T75和T100处理对叶绿素a含量产生促进作用;不同浓度处理对叶绿素b和总叶绿素含量产生抑制作用,对SOD和POD活性产生促进作用;T25和T75处理对CAT活性产生促进作用,T50和T100处理对CAT活性产生抑制作用。(2)金红石处理中,不同浓度处理促进浮萍生长;对叶绿素a含量产生促进作用;对叶绿素b和总叶绿素含量产生抑制作用,T25、T50和T100处理对SOD活性产生促进作用,T75处理对SOD活性产生抑制作用;不同浓度处理对POD活性产生促进作用;T25、T75和T100处理对CAT活性产生抑制作用,T50处理对CAT活性产生促进作用。(3)P25处理中,不同浓度处理促进浮萍生长,对叶绿素a含量产生促进作用,对叶绿素b含量产生抑制作用,随着浓度的增加,抑制作用增强;T25、T50和T100处理对总叶绿素含量产生促进作用,T75处理对总叶绿素含量产生抑制作用;对SOD和POD活性均产生促进作用,T25、T50和T100处理对CAT活性产生抑制作用,T75处理对CAT活性产生促进作用。锐钛矿型TiO2-NPs会抑制浮萍生长,金红石型和P25混合型TiO2-NPs会促进浮萍生长。
  • 加载中
  • 高嫄. 纳米TiO2、纳米CuO对青萍生长影响及其机理探讨[D]. 淄博:山东理工大学, 2012:2-7 Gao Y. Effect and mechanism of TiO2 and CuO nano-particles on Lemna minor growth[D]. Zibo:Shandong University of Technology, 2012

    :2-7(in Chinese)

    Zuo G H, Kang S G, Xiu P, et al. Interactions between proteins and carbon-based nanoparticles:Exploring the origin of nanotoxicity at the molecular level[J]. Small, 2013, 9(9-10):1546-1556
    Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
    Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment[J]. Journal of Environmental Monitoring, 2011, 13(5):1145-1155
    Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222
    Westerhoff P, Song G X, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants:Implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203
    Lu P J, Ho I C, Lee T C. Induction of sister chromatid exchanges and micronuclei by titanium dioxide in Chinese hamster ovary-K1 cells[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1998, 414(1-3):15-20
    Rahman Q, Lohani M, Dopp E, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts[J]. Environmental Health Perspectives, 2002, 110(8):797-800
    Gurr J R, Wang A S S, Chen C H, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells[J]. Toxicology, 2005, 213(1-2):66-73
    Wang J J, Sanderson B J S, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells[J]. Mutation Research, 2007, 628(2):99-106
    Kang S J, Kim B M, Lee Y J, et al. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes[J]. Environmental and Molecular Mutagenesis, 2008, 49(5):399-405
    Huang S, Chueh P J, Lin Y W, et al. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure[J]. Toxicology and Applied Pharmacology, 2009, 241(2):182-194
    Singh S, Shi T M, Duffin R, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2:Role of the specific surface area and of surface methylation of the particles[J]. Toxicology and Applied Pharmacology, 2007, 222(2):141-151
    Miralles P, Church T L, Harris A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science & Technology, 2012, 46(17):9224-9239
    Monica R C, Cremonini R. Nanoparticles and higher plants[J]. Caryologia, 2009, 62(2):161-165
    王一翔. 纳米二氧化钛对三角褐指藻的毒性效应研究[D]. 北京:清华大学, 2016:16-19 Wang Y X. The toxic effect of nanoscale titanium dioxide (nTiO2) on Phacodactylum tricornutum[D]. Beijing:Tsinghua University, 2016

    :16-19(in Chinese)

    兰丽贞, 赵群芬, 金凯星. 环境中纳米TiO2对拟南芥生长及相关基因表达的影响[J]. 核农学报, 2018, 32(2):389-398

    Lan L Z, Zhao Q F, Jin K X. Effects of nano-TiO2 on growth and gene expression in Arabidopsis thaliana[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2):389-398(in Chinese)

    Suzuki R, Ishimaru T. An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide[J]. Journal of the Oceanographical Society of Japan, 1990, 46(4):190-194
    吴碧莹. 纳米二氧化钛对水稻的毒性及代谢影响初探[D]. 杭州:浙江大学, 2017:16-17 Wu B Y. The toxicity and metabolic effects of TiO2 nano particles on rice (Oryza sativa L.)[D]. Hangzhou:Zhejiang University, 2017

    :16-17(in Chinese)

    高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社, 2006:217-218 Gao Junfeng. Experimental Guidance of Plant Physiology[M]. Beijing:Higher Education Press, 2006:217

    -218(in Chinese)

    Donaldson K, Stone V, MacNee W. The Toxicology of Ultrafine Particles[M]//Particulate Matter:Properties and Effects upon Health. Garland Science, 2020:115-129
    Zhai G S, Walters K S, Peate D W, et al. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar[J]. Environmental Science & Technology Letters, 2014, 1(2):146-151
    成婕, 谢尔瓦妮古丽·苏来曼, 邓祥元, 等. 纳米二氧化钛对斜生栅藻的毒性效应研究[J]. 江西农业大学学报, 2014, 36(1):238-242

    Cheng J, Sulaiman X, Deng X Y, et al. Toxic effects of nanoparticle TiO2 on Scenedesmus obliquus[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1):238-242(in Chinese)

    文双喜, 王毅力. 水培实验中不同粒径纳米TiO2对金鱼藻种子发芽和植株生长和生理的影响[J]. 生态毒理学报, 2018, 13(6):268-277

    Wen S X, Wang Y L. Effect of nano titanium dioxide with different particle size on the seed germination and plant growth and physiology of Ceratophyllum demersum in hydroponic experiments[J]. Asian Journal of Ecotoxicology, 2018, 13(6):268-277(in Chinese)

    Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant, Cell & Environment, 2009, 32(5):577-584
    Lynch I, Salvati A, Dawson K A. Protein-nanoparticle interactions:What does the cell see?[J]. Nature Nanotechnology, 2009, 4(9):546-547
    李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报, 2013, 32(6):1122-1127

    Li Y J, Wang J, Cui Y B, et al. Ecotoxicological effects of ZnO and TiO2 nanoparticles on microalgae Scenedesmus oblignus[J]. Journal of Agro-Environment Science, 2013, 32(6):1122-1127(in Chinese)

    Stebbing A R D. Hormesis-The stimulation of growth by low levels of inhibitors[J]. Science of the Total Environment, 1982, 22(3):213-234
    Wang Y, Tang X X, Li Y Q, et al. Stimulation effect of anthracene on marine microalgae growth[J]. Chinese Journal of Applied Ecology, 2002, 13(3):343-346
    Li F M, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158:1-13
    Perreault F, Oukarroum A, Pirastru L, et al. Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba[J]. Journal of Botany, 2010, 2010:1-9
    Prasad M N V, Malec P, Waloszek A, et al. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation[J]. Plant Science, 2001, 161(5):881-889
    侯东颖, 冯佳, 谢树莲. 纳米二氧化钛胁迫对普生轮藻的毒性效应[J]. 环境科学学报, 2012, 32(6):1481-1486

    Hou D Y, Feng J, Xie S L. Toxic effects of nanoparticle TiO2 stress on Chara vulgaris L.[J]. Acta Scientiae Circumstantiae, 2012, 32(6):1481-1486(in Chinese)

    李子杰, 姜文君, 于明, 等. LaCl3对轮藻光合色素含量及抗氧化酶活性的影响[J]. 中国稀土学报, 2006, 24(S2):192-195

    Li Z J, Jiang W J, Yu M, et al. Effects of LaCl3 on photosynthetic pigment contents and antioxidative enzyme activities in chara[J]. Journal of the Chinese Rare Earth Society, 2006, 24(S2):192-195(in Chinese)

    武鹏鹏. Nano TiO2和土霉素对斜生栅藻的毒性效应研究[D]. 石家庄:河北科技大学, 2019:22-23 Wu P P. Toxic effects of nano TiO2 and oxytetracycline on Scenedesmus obliquus[D]. Shijiazhuang:Hebei University of Science and Technology, 2019

    :22-23(in Chinese)

    孙羿, 王华, 吕丰訸, 等. 纳米TiO2对小球藻和新月菱形藻的毒性研究[J]. 现代农业科技, 2016(1):217-219, 223

    Sun Y, Wang H, Lv F H, et al. Toxicity of TiO2 nanoparticles to Chlorella sp. and Nitzschia closterium[J]. Modern Agricultural Science and Technology, 2016(1):217-219, 223(in Chinese)

    Hong F S, Zhou J, Liu C, et al. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach[J]. Biological Trace Element Research, 2005, 105(1-3):269-279
    Wang H H, Kou X M, Pei Z G, et al. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants[J]. Nanotoxicology, 2011, 5(1):30-42
    Tan X M, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15):3479-3487
    Fang W C, Kao C H. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc[J]. Plant Science, 2000, 158(1-2):71-76
    王震宇, 于晓莉, 高冬梅, 等. 人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J]. 环境科学, 2010, 31(2):480-487

    Wang Z Y, Yu X L, Gao D M, et al. Effect of nano-rutile TiO2 and multiwalled carbon nanotubes on the growth of maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental Science, 2010, 31(2):480-487(in Chinese)

    Cui Y, Zhao N. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc[J]. Plant, Soil and Environment, 2011, 57(1):34-39
    Song G L, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor[J]. Environmental Toxicology and Chemistry, 2012, 31(9):2147-2152
  • 加载中
计量
  • 文章访问数:  1973
  • HTML全文浏览数:  1973
  • PDF下载数:  97
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-20
刘爽, 郭雪莲, 郑荣波, 范峰华. 纳米二氧化钛对浮萍生长和生理特征的影响[J]. 生态毒理学报, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001
引用本文: 刘爽, 郭雪莲, 郑荣波, 范峰华. 纳米二氧化钛对浮萍生长和生理特征的影响[J]. 生态毒理学报, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001
Liu Shuang, Guo Xuelian, Zheng Rongbo, Fan Fenghua. Effects of TiO2-NPs on Growth and Physiological Characteristics of Lemna minor[J]. Asian journal of ecotoxicology, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001
Citation: Liu Shuang, Guo Xuelian, Zheng Rongbo, Fan Fenghua. Effects of TiO2-NPs on Growth and Physiological Characteristics of Lemna minor[J]. Asian journal of ecotoxicology, 2021, 16(6): 234-243. doi: 10.7524/AJE.1673-5897.20201120001

纳米二氧化钛对浮萍生长和生理特征的影响

    通讯作者: 郑荣波, E-mail: zhengrbzy@hotmail.com
    作者简介: 刘爽(1995-),女,硕士研究生,研究方向为湿地生态学,E-mail:869086444@qq.com
  • 1. 云南省高原湿地保护修复与生态服务重点实验室, 昆明 650224;
  • 2. 西南林业大学, 昆明 650224;
  • 3. 国家高原湿地研究中心, 昆明 650224
基金项目:

云南省应用基础研究计划重点项目(202001AS070041);国家自然科学基金资助项目(41563008);云南省高原湿地保护修复与生态服务重点实验室开放基金(202105AG070002)

摘要: 为了揭示纳米二氧化钛(TiO2-NPs)对水生植物生长和生理特征的影响,选取浮萍为受试物种,输入锐钛矿型、金红石型和P25混合型(m(锐钛矿):m(金红石)=4:1)3种晶型的TiO2-NPs,测定不同浓度(CK:0 mg·L-1,T25:25 mg·L-1,T50:50 mg·L-1,T75:75 mg·L-1,T100:100 mg·L-1)对浮萍叶片数、叶面积、叶绿素含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性的影响。结果表明:(1)锐钛矿处理中,不同浓度处理均抑制浮萍生长,T25和T50处理对叶绿素a含量产生抑制作用,T75和T100处理对叶绿素a含量产生促进作用;不同浓度处理对叶绿素b和总叶绿素含量产生抑制作用,对SOD和POD活性产生促进作用;T25和T75处理对CAT活性产生促进作用,T50和T100处理对CAT活性产生抑制作用。(2)金红石处理中,不同浓度处理促进浮萍生长;对叶绿素a含量产生促进作用;对叶绿素b和总叶绿素含量产生抑制作用,T25、T50和T100处理对SOD活性产生促进作用,T75处理对SOD活性产生抑制作用;不同浓度处理对POD活性产生促进作用;T25、T75和T100处理对CAT活性产生抑制作用,T50处理对CAT活性产生促进作用。(3)P25处理中,不同浓度处理促进浮萍生长,对叶绿素a含量产生促进作用,对叶绿素b含量产生抑制作用,随着浓度的增加,抑制作用增强;T25、T50和T100处理对总叶绿素含量产生促进作用,T75处理对总叶绿素含量产生抑制作用;对SOD和POD活性均产生促进作用,T25、T50和T100处理对CAT活性产生抑制作用,T75处理对CAT活性产生促进作用。锐钛矿型TiO2-NPs会抑制浮萍生长,金红石型和P25混合型TiO2-NPs会促进浮萍生长。

English Abstract

参考文献 (43)

返回顶部

目录

/

返回文章
返回