生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响

李文斌, 张乂方, 谢佳, 朱浪, 陈芯怡, 邓红艳, 何海霞, 孟昭福. 生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响[J]. 环境化学, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901
引用本文: 李文斌, 张乂方, 谢佳, 朱浪, 陈芯怡, 邓红艳, 何海霞, 孟昭福. 生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响[J]. 环境化学, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901
LI Wenbin, ZHANG Yifang, XIE Jia, ZHU Lang, CHEN Xinyi, DENG Hongyan, HE Haixia, MENG Zhaofu. Effects of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section)[J]. Environmental Chemistry, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901
Citation: LI Wenbin, ZHANG Yifang, XIE Jia, ZHU Lang, CHEN Xinyi, DENG Hongyan, HE Haixia, MENG Zhaofu. Effects of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section)[J]. Environmental Chemistry, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901

生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响

    通讯作者: 李文斌, E-mail: lwb062@163.com 邓红艳, E-mail: dhongyan119@163.com
  • 基金项目:

    西华师范大学基本科研业务费资金(17E057),四川省科技厅项目(2018JY0224)和国家自然科学基金(41271244)资助.

Effects of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section)

    Corresponding authors: LI Wenbin, lwb062@163.com ;  DENG Hongyan, dhongyan119@163.com
  • Fund Project: Supported by the Fundamental Research Funds of China West Normal University(17E057), the Scientific Research Fundation of Sichuan Science and Technology Agency(2018JY0224) and the National Natural Science Foundation of China(41271244).
  • 摘要: 为了探索生物炭修饰材料对嘉陵江流域沿岸土吸附Cu2+的影响,采用生物炭(B)、磁化生物炭(MB)以及50%和100% CEC十二烷基二甲基甜菜碱(BS-12)修饰MB(分别以50% BS-MB和100% BS-MB表示)作为炭修饰材料,分别将其以1%(质量比)加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,共计形成20个混合土样(以原土作为对照),批处理法研究各样品对Cu2+的等温吸附和热力学特征,并对比不同温度、pH值和离子强度下的吸附差异.结果表明,不同混合土样对Cu2+吸附等温线均呈"L"型且符合Langmuir模型,最大吸附量qm保持在62.20-308.88 mmol·kg-1之间.相同生物炭修饰材料添加下Cu2+吸附量表现为JL > NB > CX > HC的趋势.20-40℃范围内,各混合土样对Cu2+的吸附量均随温度的升高而增加,表现为增温正效应.离子强度从0.01 mol·L-1增加到0.1 mol·L-1,各混合土样(除HC外)对Cu2+的吸附量均呈现先增后降的趋势.pH值升高有利于混合土样对Cu2+的吸附.各混合土样对Cu2+的吸附是一个自发、吸热和熵增的反应过程,且CEC和比表面积是决定混合土样对Cu2+吸附效果的关键.
  • 加载中
  • [1] 夏星辉, 陈静生. 土壤重金属污染治理方法研究进展[J]. 环境科学, 1997, 18(3):72-76.

    XIA X H, CHEN J S. Advances in the study of remediation methods of heavy metal contaminated soil[J]. Chinese Journal of Environmental Science, 1997, 18(3):72-76(in Chinese).

    [2] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3):409-417.

    HUANG Z Y, HE X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):409-417(in Chinese).

    [3] 刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1):270-279.

    LIU S, WU Q Y, CAO X J, et al. Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou City[J]. Environmental Science, 2016, 37(1):270-279(in Chinese).

    [4] LI Z, MA Z, KUIJP T J V D, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2013, 468-469C:843-853.
    [5] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2):293-298.

    SONG W, CHEN B M, LIU L. Soil heavy metal pollution of cultivated land in china[J]. Research of Soil and Water Conservation, 2013, 20(2):293-298(in Chinese).

    [6] 李扬, 乔玉辉, 莫晓辉, 等. 蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J]. 农业环境科学学报, 2010, 29(S1):250-255.

    LI Y, QIAO Y H, MO X H, et al. Analysis for earthworm feces as one of potential repair agents of heavy metal contamination in soil[J]. Journal of Agro-Environment Science, 2010, 29(S1):250-255(in Chinese).

    [7] LIM S F, LEE A Y W. Kinetic study on removal of heavy metal ions from aqueous solution by using soil[J]. Environmental Science and Pollution Research, 2015, 22(13):10144-10158.
    [8] CAPORALE A G, PIGNA M, SOMMELLA A, et al. Effect of pruning-derived biochar on heavy metals removal and water dynamics[J]. Biology & Fertility of Soils, 2014, 50(8):1211-1222.
    [9]
    [10] LI, W B, MENG Z F, LIU Z, et al. Chromium (Ⅵ) adsorption characteristics of bentonite under different modification patterns[J]. Polish Journal of Environmental Studies, 2016, 25(3):1075-1083.
    [11] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19):5998-6011.

    WANG H Y, GAI X P, ZHAI L M, et al. Effect of biochar on soil nitrogen cycling:A review[J]. Acta Ecologica Sinica, 2016, 36(19):5998-6011(in Chinese).

    [12] 佟雪娇, 李九玉, 姜军, 等. 添加农作物秸秆炭对红壤吸附Cu(Ⅱ)的影响[J]. 生态与农村环境学报, 2011, 27(5):37-41.

    TONG X J, LI J Y, JIANG J, et al. Effect of biochars derived from crop straws on Cu(Ⅱ) adsorption by red soils[J]. Journal of Ecology and Rural Environment, 2011, 27(5):37-41(in Chinese).

    [13] YUAN J H, XU R K, QIAN W, et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of Soils & Sediments, 2011, 11(5):741-750.
    [14] MENG Z F, ZHANG Y P, ZHANG Z Q. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil.[J]. Journal of Hazardous Materials, 2008, 159(2):492-498.
    [15] 李婷. 两性修饰膨润土对苯酚和Cd(Ⅱ)的平衡吸附特征[D]. 杨凌:西北农林科技大学, 2012. LI T. Equilibrium adsorption characteristics of amphoteric modified bentonites to Cd(Ⅱ) and phenol[D]. Yangling:Northwest A&F University, 2012(in Chinese).
    [16] 任爽, 孟昭福, 刘伟, 等. 两性修饰磁性膨润土的表征及其对苯酚的吸附[J]. 农业环境科学学报, 2017, 36(1):108-115.

    REN S, MENG Z F, LIU W, et al. Characterization and adsorption performance of phenol on amphoteric modified magnetic bentonites[J]. Journal of Agro-Environment Science, 2017, 36(1):108-115(in Chinese).

    [17] LI R, WANG J J, ZHOU B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential asphosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215:209-214.
    [18]
    [19] 宋鹏飞, 张丹, 倪才英, 等. 灰化苔草叶片铜污染的高光谱响应研究[J]. 环境工程学报, 2016, 10(2):999-1004.

    SONG P F, ZHANG D, NI C Y, et al. Study on hyperspectrum response of carex cinerascens to copper pollution[J]. Techniques and Equipment for Environmental Pollution Control, 2016, 10(2):999-1004(in Chinese).

    [20] 赵盼盼, 孟昭福, 杨亚提, 等. 高岭土对BS-12的吸附特征及影响因素的研究[J]. 土壤通报, 2015, 46(5):1226-1231.

    ZHAO P P, MENG Z F, YANG Y T, et al. Studies on adsorption characteristics of BS-12 on kaolinite and its affecting factors[J]. Chinese Journal of Soil Science, 2015, 46(5):1226-1231(in Chinese).

    [21] 余璐, 孟昭福, 李文斌, 等. CTMAB对BS-12修饰膨润土的复配修饰模式[J]. 土壤学报, 2016, 53(2):543-551.

    YU L, MENG Z F, LI W B, et al. Mechanism of CTMAB modifying BS-12 modified bentonite[J].Acta Pedologica Sinica, 2016, 53(2):543-551(in Chinese).

    [22] 王图锦, 潘瑾, 刘雪莲. 三峡库区澎溪河消落带土壤中重金属形态分布与迁移特征研究[J]. 岩矿测试, 2016, 35(4):425-432.

    WANG T J, PAN J, LIU X L. Speciation and translocation characteristics of soil heavy metals in the water level fluctuating zone of Pengxi River in Three Gorges Reservoir Area[J]. Rock and Mineral Analysi, 2016, 35(4):425-432(in Chinese).

    [23] 谢婷, 李文斌, 孟昭福, 等. BS-12+DTAB复配修饰膨润土吸附Cr(Ⅵ)和Cd2+的研究[J]. 农业环境科学学报, 2017, 36(9):1778-1786.

    XIE T, LI W B, MENG Z F, et al. Studies on Cr(Ⅵ)and Cd2+ adsorption onto bentonite modified by a BS-12+DTAB complex[J]. Journal of Agro-Environment Science, 2017, 36(9):1778-1786(in Chinese).

    [24] 邓红艳, 李文斌, 郑莹, 等. 两性膨润土增强不同层次紫色土吸附Cu2+的研究[J]. 地球与环境, 2018, 46(4):403-409.

    DENG H Y, LI W B, ZHENG Y, et al. Study on the enhanced adsorption of Cu2+ in different purple soil layers by amphoteric bentonite[J]. Earth and Environment, 2018, 46(4):403-409(in Chinese).

    [25] JIA D A, ZHOU D M, WANG Y J, et al. Adsorption and cosorption of Cu(Ⅱ) and tetracycline on two soils with different characteristics[J]. Geoderma, 2008, 146(1):224-230.
    [26] 邹献中, 徐建民, 赵安珍, 等. 离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J]. 土壤学报, 2003, 40(6):845-851.

    ZOU X Z, XU J M, ZHAO A Z, et al. Effects of ionic strength and pH on interaction between Cu2+ and variable charge soils[J]. Acta Pedologica Sinica, 2003, 40(6):845-851(in Chinese).

    [27] SHUMAN L M. Effect of ionic strength and anions on zinc adsorption by two soils[J]. Soil Science Society of America Journal, 1986, 50(6):1438-1442.
  • 加载中
计量
  • 文章访问数:  2411
  • HTML全文浏览数:  2411
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-09
李文斌, 张乂方, 谢佳, 朱浪, 陈芯怡, 邓红艳, 何海霞, 孟昭福. 生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响[J]. 环境化学, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901
引用本文: 李文斌, 张乂方, 谢佳, 朱浪, 陈芯怡, 邓红艳, 何海霞, 孟昭福. 生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响[J]. 环境化学, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901
LI Wenbin, ZHANG Yifang, XIE Jia, ZHU Lang, CHEN Xinyi, DENG Hongyan, HE Haixia, MENG Zhaofu. Effects of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section)[J]. Environmental Chemistry, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901
Citation: LI Wenbin, ZHANG Yifang, XIE Jia, ZHU Lang, CHEN Xinyi, DENG Hongyan, HE Haixia, MENG Zhaofu. Effects of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section)[J]. Environmental Chemistry, 2020, (6): 1597-1606. doi: 10.7524/j.issn.0254-6108.2019040901

生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响

    通讯作者: 李文斌, E-mail: lwb062@163.com ;  邓红艳, E-mail: dhongyan119@163.com
  • 1. 西华师范大学环境科学与工程学院, 南充, 637009;
  • 2. 西北农林科技大学资源环境学院, 杨凌, 712100
基金项目:

西华师范大学基本科研业务费资金(17E057),四川省科技厅项目(2018JY0224)和国家自然科学基金(41271244)资助.

摘要: 为了探索生物炭修饰材料对嘉陵江流域沿岸土吸附Cu2+的影响,采用生物炭(B)、磁化生物炭(MB)以及50%和100% CEC十二烷基二甲基甜菜碱(BS-12)修饰MB(分别以50% BS-MB和100% BS-MB表示)作为炭修饰材料,分别将其以1%(质量比)加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,共计形成20个混合土样(以原土作为对照),批处理法研究各样品对Cu2+的等温吸附和热力学特征,并对比不同温度、pH值和离子强度下的吸附差异.结果表明,不同混合土样对Cu2+吸附等温线均呈"L"型且符合Langmuir模型,最大吸附量qm保持在62.20-308.88 mmol·kg-1之间.相同生物炭修饰材料添加下Cu2+吸附量表现为JL > NB > CX > HC的趋势.20-40℃范围内,各混合土样对Cu2+的吸附量均随温度的升高而增加,表现为增温正效应.离子强度从0.01 mol·L-1增加到0.1 mol·L-1,各混合土样(除HC外)对Cu2+的吸附量均呈现先增后降的趋势.pH值升高有利于混合土样对Cu2+的吸附.各混合土样对Cu2+的吸附是一个自发、吸热和熵增的反应过程,且CEC和比表面积是决定混合土样对Cu2+吸附效果的关键.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回