生物炭修饰材料对嘉陵江(川渝段)沿岸土吸附Cu2+的影响
Effects of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section)
-
摘要: 为了探索生物炭修饰材料对嘉陵江流域沿岸土吸附Cu2+的影响,采用生物炭(B)、磁化生物炭(MB)以及50%和100% CEC十二烷基二甲基甜菜碱(BS-12)修饰MB(分别以50% BS-MB和100% BS-MB表示)作为炭修饰材料,分别将其以1%(质量比)加入嘉陵江流域(川渝段)内苍溪(CX)、南部(NB)、嘉陵(JL)和合川(HC)沿岸土中,共计形成20个混合土样(以原土作为对照),批处理法研究各样品对Cu2+的等温吸附和热力学特征,并对比不同温度、pH值和离子强度下的吸附差异.结果表明,不同混合土样对Cu2+吸附等温线均呈"L"型且符合Langmuir模型,最大吸附量qm保持在62.20-308.88 mmol·kg-1之间.相同生物炭修饰材料添加下Cu2+吸附量表现为JL > NB > CX > HC的趋势.20-40℃范围内,各混合土样对Cu2+的吸附量均随温度的升高而增加,表现为增温正效应.离子强度从0.01 mol·L-1增加到0.1 mol·L-1,各混合土样(除HC外)对Cu2+的吸附量均呈现先增后降的趋势.pH值升高有利于混合土样对Cu2+的吸附.各混合土样对Cu2+的吸附是一个自发、吸热和熵增的反应过程,且CEC和比表面积是决定混合土样对Cu2+吸附效果的关键.Abstract: To explore the effect of biochar-modified materials on Cu2+ adsorption by bank soils along Jialing River (Sichuan and Chongqing section), biochar (B), magnetized biochar (MB), 50% and 100% CEC dodecyl dimethyl betaine (BS-12) modified MB (represented by 50%BS-MB and 100%BS-MB, respectively) were used as the biochar-modified materials, which were added into the bank soils of Cangxi (CX), Nanbu (NB), Jialing (JL) and Hechuan (HC) along Jialing River (Sichuan and Chongqing section) with a mass ratio of 1%, and a total of 20 mixed soils were formed (ambient soil was taken as the control). The adsorption isotherms and thermodynamic characteristics of Cu2+ in each mixed soil sample were studied by batch method, and the differences in adsorption under different pH values, temperatures and ion strengths were discussed. The results indicated that the adsorption isotherms of Cu2+ on the tested samples were all "L" type and accorded with the Langmuir model, and the maximum adsorption amount (qm) of Cu2+ on the three types of materials varied between 62.20-308.88 mmol·kg-1. The adsorption amount of Cu2+ showed a trend of JL > NB > CX > HC on all the materials. In the temperature range of 20-40℃, the adsorption amount of Cu2+ on the mixed soil samples increased with the temperature, which presented a warming effect. When the ionic strength changed from 0.01 mol·L-1 to 0.1 mol·L-1, the adsorption amount of Cu2+ on each tested sample (except HC) increased first and then decreased. Increasing pH value was beneficial to the Cu2+ adsorption by different mixed soil samples. The adsorption of Cu2+ by each mixed soil sample was a spontaneous, endothermic and entropy increasing reaction process. Meanwhile CEC and specific surface area were the key factors in determining the adsorption efficiency of Cu2+ on soil samples.
-
Key words:
- biochar /
- Jialing River /
- bank soil /
- Cu2+ /
- adsorption amount
-
[1] 夏星辉, 陈静生. 土壤重金属污染治理方法研究进展[J]. 环境科学, 1997, 18(3):72-76. XIA X H, CHEN J S. Advances in the study of remediation methods of heavy metal contaminated soil[J]. Chinese Journal of Environmental Science, 1997, 18(3):72-76(in Chinese).
[2] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3):409-417. HUANG Z Y, HE X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3):409-417(in Chinese).
[3] 刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1):270-279. LIU S, WU Q Y, CAO X J, et al. Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou City[J]. Environmental Science, 2016, 37(1):270-279(in Chinese).
[4] LI Z, MA Z, KUIJP T J V D, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2013, 468-469C:843-853. [5] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2):293-298. SONG W, CHEN B M, LIU L. Soil heavy metal pollution of cultivated land in china[J]. Research of Soil and Water Conservation, 2013, 20(2):293-298(in Chinese).
[6] 李扬, 乔玉辉, 莫晓辉, 等. 蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J]. 农业环境科学学报, 2010, 29(S1):250-255. LI Y, QIAO Y H, MO X H, et al. Analysis for earthworm feces as one of potential repair agents of heavy metal contamination in soil[J]. Journal of Agro-Environment Science, 2010, 29(S1):250-255(in Chinese).
[7] LIM S F, LEE A Y W. Kinetic study on removal of heavy metal ions from aqueous solution by using soil[J]. Environmental Science and Pollution Research, 2015, 22(13):10144-10158. [8] CAPORALE A G, PIGNA M, SOMMELLA A, et al. Effect of pruning-derived biochar on heavy metals removal and water dynamics[J]. Biology & Fertility of Soils, 2014, 50(8):1211-1222. [9] [10] LI, W B, MENG Z F, LIU Z, et al. Chromium (Ⅵ) adsorption characteristics of bentonite under different modification patterns[J]. Polish Journal of Environmental Studies, 2016, 25(3):1075-1083. [11] 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19):5998-6011. WANG H Y, GAI X P, ZHAI L M, et al. Effect of biochar on soil nitrogen cycling:A review[J]. Acta Ecologica Sinica, 2016, 36(19):5998-6011(in Chinese).
[12] 佟雪娇, 李九玉, 姜军, 等. 添加农作物秸秆炭对红壤吸附Cu(Ⅱ)的影响[J]. 生态与农村环境学报, 2011, 27(5):37-41. TONG X J, LI J Y, JIANG J, et al. Effect of biochars derived from crop straws on Cu(Ⅱ) adsorption by red soils[J]. Journal of Ecology and Rural Environment, 2011, 27(5):37-41(in Chinese).
[13] YUAN J H, XU R K, QIAN W, et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of Soils & Sediments, 2011, 11(5):741-750. [14] MENG Z F, ZHANG Y P, ZHANG Z Q. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil.[J]. Journal of Hazardous Materials, 2008, 159(2):492-498. [15] 李婷. 两性修饰膨润土对苯酚和Cd(Ⅱ)的平衡吸附特征[D]. 杨凌:西北农林科技大学, 2012. LI T. Equilibrium adsorption characteristics of amphoteric modified bentonites to Cd(Ⅱ) and phenol[D]. Yangling:Northwest A&F University, 2012(in Chinese). [16] 任爽, 孟昭福, 刘伟, 等. 两性修饰磁性膨润土的表征及其对苯酚的吸附[J]. 农业环境科学学报, 2017, 36(1):108-115. REN S, MENG Z F, LIU W, et al. Characterization and adsorption performance of phenol on amphoteric modified magnetic bentonites[J]. Journal of Agro-Environment Science, 2017, 36(1):108-115(in Chinese).
[17] LI R, WANG J J, ZHOU B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential asphosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215:209-214. [18] [19] 宋鹏飞, 张丹, 倪才英, 等. 灰化苔草叶片铜污染的高光谱响应研究[J]. 环境工程学报, 2016, 10(2):999-1004. SONG P F, ZHANG D, NI C Y, et al. Study on hyperspectrum response of carex cinerascens to copper pollution[J]. Techniques and Equipment for Environmental Pollution Control, 2016, 10(2):999-1004(in Chinese).
[20] 赵盼盼, 孟昭福, 杨亚提, 等. 高岭土对BS-12的吸附特征及影响因素的研究[J]. 土壤通报, 2015, 46(5):1226-1231. ZHAO P P, MENG Z F, YANG Y T, et al. Studies on adsorption characteristics of BS-12 on kaolinite and its affecting factors[J]. Chinese Journal of Soil Science, 2015, 46(5):1226-1231(in Chinese).
[21] 余璐, 孟昭福, 李文斌, 等. CTMAB对BS-12修饰膨润土的复配修饰模式[J]. 土壤学报, 2016, 53(2):543-551. YU L, MENG Z F, LI W B, et al. Mechanism of CTMAB modifying BS-12 modified bentonite[J].Acta Pedologica Sinica, 2016, 53(2):543-551(in Chinese).
[22] 王图锦, 潘瑾, 刘雪莲. 三峡库区澎溪河消落带土壤中重金属形态分布与迁移特征研究[J]. 岩矿测试, 2016, 35(4):425-432. WANG T J, PAN J, LIU X L. Speciation and translocation characteristics of soil heavy metals in the water level fluctuating zone of Pengxi River in Three Gorges Reservoir Area[J]. Rock and Mineral Analysi, 2016, 35(4):425-432(in Chinese).
[23] 谢婷, 李文斌, 孟昭福, 等. BS-12+DTAB复配修饰膨润土吸附Cr(Ⅵ)和Cd2+的研究[J]. 农业环境科学学报, 2017, 36(9):1778-1786. XIE T, LI W B, MENG Z F, et al. Studies on Cr(Ⅵ)and Cd2+ adsorption onto bentonite modified by a BS-12+DTAB complex[J]. Journal of Agro-Environment Science, 2017, 36(9):1778-1786(in Chinese).
[24] 邓红艳, 李文斌, 郑莹, 等. 两性膨润土增强不同层次紫色土吸附Cu2+的研究[J]. 地球与环境, 2018, 46(4):403-409. DENG H Y, LI W B, ZHENG Y, et al. Study on the enhanced adsorption of Cu2+ in different purple soil layers by amphoteric bentonite[J]. Earth and Environment, 2018, 46(4):403-409(in Chinese).
[25] JIA D A, ZHOU D M, WANG Y J, et al. Adsorption and cosorption of Cu(Ⅱ) and tetracycline on two soils with different characteristics[J]. Geoderma, 2008, 146(1):224-230. [26] 邹献中, 徐建民, 赵安珍, 等. 离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J]. 土壤学报, 2003, 40(6):845-851. ZOU X Z, XU J M, ZHAO A Z, et al. Effects of ionic strength and pH on interaction between Cu2+ and variable charge soils[J]. Acta Pedologica Sinica, 2003, 40(6):845-851(in Chinese).
[27] SHUMAN L M. Effect of ionic strength and anions on zinc adsorption by two soils[J]. Soil Science Society of America Journal, 1986, 50(6):1438-1442.
计量
- 文章访问数: 2411
- HTML全文浏览数: 2411
- PDF下载数: 36
- 施引文献: 0