端羧基超支化型淋洗剂对尾矿库区土壤重金属的淋洗效果
Heavy metal removal from soil of mine tailings by a carboxyl-terminated hyperbranched washing agent
-
摘要: 通过熔融聚合法,以三羟甲基丙烷为中心核,柠檬酸为共聚单体,成功制备了端羧基型超支化聚合物,并采用振荡淋洗法研究了所制备的超支化聚合物在不同因素影响下对尾矿库区污染土壤Cd、Pb和Zn的淋洗效果.实验结果表明,随着端羧基超支化型淋洗剂使用浓度的增加及淋洗时间的延长,HBP-COOH对Cd、Pb和Zn的去除率总体呈现增大趋势.在CHBP=1.0%,且pH=3时,HBP-COOH对Cd、Zn的去除率分别为73.2%和48.1%;在pH=5且CHBP=1.0%时,对Pb的去除率为69.2%,而且HBP-COOH对Cd的去除效果最佳.相比于柠檬酸而言,HBP-COOH对重金属具有更好的去除效果,且经HBP-COOH淋洗后,土壤的基本理化性质变化相对较小.综合考虑,HBP-COOH可以作为尾矿库区污染土壤Cd、Pb和Zn的环境友好型淋洗剂.Abstract: A carboxyl-terminated hyperbranched copolymer (HBP-COOH) was successfully prepared by melting polymerization with trimethylolpropane as the core and citric acid as monomer. Removal of Cd, Pb and Zn from the soil of mine tailings by HBP-COOH was investigated in batch experiments. The experimental results showed that the removal efficiency of Cd, Pb and Zn increased with increasing concentration of the washing agent and contact time. Moreover, under optimum operating conditions, the leaching efficiency of Cd, Pb and Zn was 73.2%, 69.2% and 48.1%, respectively. The removal efficiency of target heavy metals was in the order of Cd > Pb > Zn. Compared with citric acid, HBP-COOH had better leaching efficiency for heavy metals, and less effects on the basic physical and chemical properties of soil. Therefore, HBP-COOH could be used as an environmentally friendly agent for Cd, Pb and Zn contaminated soil remediation.
-
[1] BEESLEY L, INNEH O S, NORTON G J, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution, 2014, 186:195-202. [2] WANG S, LIU Y, LI X, et al. Removal of heavy metals from lead-zinc mine tailings by improved electrokinetic technique[J]. Environment Protection of Chemical Industry, 2008, 28(4):331-335. [3] ZHU G, GUO Q, YANG J, et al. Research on the effect and technique of remediation for multi-metal contaminated tailing soils[J], Environmental Science, 2013, 34(9):3690-3696. [4] CHEN F, YAO Q, TIAN J. Review of ecological restoration technology for mine tailings in China[J]. Engineering Review, 2016, 36(2):115-121. [5] TAO Y, YE L, PAN J, et al. Removal of Pb(Ⅱ) from aqueous solution on chitosan/TiO2 hybrid film[J]. Journal of Hazardous Materials, 2009, 161:718-722. [6] AI HAMOUZ O C S, ALI S A. Removal of heavy metal ions using a novel cross-linked polyzwitterionic phosphonate[J]. Sep Purif Technol, 2012,98:94-101. [7] YAO Z, LI J, XIE H, et al. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences,2012,16(4):722-729. [8] 郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土壤重金属的洗脱效应[J]. 中国环境科学, 2018, 38(11):4218-4227. ZHENG F L, YAO R J, YANG J S, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science, 2018, 38(11):4218-4227(in Chinese).
[9] FENG C, ZHANG S, LI L, et al. Feasibility of four wastes to remove heavy metals from contaminated soils[J]. Journal of Environmental Management, 2018, 212:258-265. [10] 串丽敏, 赵同科, 郑怀国, 等. 土壤重金属污染修复技术研究进展[J]. 环境科学与技术, 2014, 37(S2):213-222. CHUAN L M, ZHAO T K, ZHENG H G, et al. Research advances in remediation of heavy metal contaminated soils[J]. Environmental Science & Technology, 2014, 37(S2):213-222(in Chinese).
[11] BEIYUAN J, TSANG D.C.W, VALIX M, et al. Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes[J]. Chemosphere, 2018, 205:178-187. DOI:10.1016/j.chemosphere.2018.04.081. [12] 许超, 夏北城, 林颖. 柠檬酸对中低污染土壤中重金属的淋洗动力学[J]. 生态环境学报, 2009, 18(2):507-510. XU C, XIA B C, LIN Y. Kinetics of heavy metals in medium and slight pollution load soils under effects of citric washing[J]. Ecology and Environmental Sciences, 2009, 18(2):507-510(in Chinese).
[13] 潘祖仁. 高分子化学[M]. 北京:化学工业出版社, 2003:184-185. PAN Z R. Polymer Chemistry[M]. Beijing:Chemical Industry Press, 2003:184 -185(in Chinese)
[14] 许端平, 李晓波, 孙璐. 有机酸对土壤中Pb和Cd淋洗动力学特征及去除机理[J]. 安全与环境学报, 2015, 15(3):261-266. XU D P, LI X B, SUN L. Washing kinetics and mechanism of removing Pb and Cd from the contaminated soil with the organic acids[J]. Journal of Safety and Environment, 2015, 15(3):261-266(in Chinese).
[15] 陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报, 2018, 12(10):2845-2854. CHEN X Y, WU Y Q. Remediation mechanism of multi-heavy metal contaminated soil by using different chemical washing agents[J]. Chinese Journal of Environmental Engineering, 2018,12(10):2845-2854(in Chinese).
[16] 林青. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711. LIN Q. A Review on competitive adsorption of heavy metals in soils[J]. Soils, 2008, 40(5):706-711(in Chinese).
[17] OTTOSEN L M, HANSEN H K, JENSEN P E. Relation between pH and desorption of Cu, Cr, Zn, and Pb from industrially polluted soils[J]. Water, Air and Soil Pollution, 2009, 201:295-304. [18] ZHANG W, TONG L, YUAN Y, et al. Influence of soil washing with a chelator on subsequent chemical immobilization of heavy metals in a contaminated soil[J]. Journal of Hazardous Materials, 2010, 178:578-587. [19] HUANG H H, YAO Q, LIU B L, et al. Synthesis and characterization of scale and corrosion inhibitors with hyper-branched structure and its mechanism[J]. New Journal of Chemistry, 2017, 41:12205-12217. [20] 姚瑶, 张世熔, 王怡君, 等. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报, 2018, 12(7):2039-2046. YAO Y, ZHANG S R, WANG Y J, et al. Effects of different environmentally friendly washing agents on removal of soil heavy metals[J]. Chinese Journal of Environmental Engineering,2018,12(7):2039-2046(in Chinese).
[21] 龚伟, 李姣姣, 强杰, 等. 柠檬酸型超支化聚酰胺淋洗剂对重金属污染土壤的修复效果[J]. 中国塑料, 2019, 33(5):82-88. GONG W, LI J J, QIANG J, et al. Study on effect of citric-acid hyperbranched polyamide leaching agent on removal of heavy metal from soil[J]. China Plastics,2019,33(5):82-88(in Chinese).
计量
- 文章访问数: 1547
- HTML全文浏览数: 1547
- PDF下载数: 26
- 施引文献: 0