Ce(x)Mn/TiO2-y催化剂低温NH3-SCR脱硝性能

张先龙, 张新成, 胡晓芮, 吴雪平, 方城, 肖客松. Ce(x)Mn/TiO2-y催化剂低温NH3-SCR脱硝性能[J]. 环境化学, 2021, (2): 632-641. doi: 10.7524/j.issn.0254-6108.2019092905
引用本文: 张先龙, 张新成, 胡晓芮, 吴雪平, 方城, 肖客松. Ce(x)Mn/TiO2-y催化剂低温NH3-SCR脱硝性能[J]. 环境化学, 2021, (2): 632-641. doi: 10.7524/j.issn.0254-6108.2019092905
ZHANG Xianlong, ZHANG Xincheng, HU Xiaorui, WU Xueping, FANG Cheng, XIAO Kesong. Ce(x)Mn/TiO2-y catalysts for NH3-SCR of NO at low temperature[J]. Environmental Chemistry, 2021, (2): 632-641. doi: 10.7524/j.issn.0254-6108.2019092905
Citation: ZHANG Xianlong, ZHANG Xincheng, HU Xiaorui, WU Xueping, FANG Cheng, XIAO Kesong. Ce(x)Mn/TiO2-y catalysts for NH3-SCR of NO at low temperature[J]. Environmental Chemistry, 2021, (2): 632-641. doi: 10.7524/j.issn.0254-6108.2019092905

Ce(x)Mn/TiO2-y催化剂低温NH3-SCR脱硝性能

    通讯作者: 张先龙, E-mail: zhangxianlong@hfut.edu.cn
  • 基金项目:

    国家自然科学基金(51872070)资助.

Ce(x)Mn/TiO2-y catalysts for NH3-SCR of NO at low temperature

    Corresponding author: ZHANG Xianlong, zhangxianlong@hfut.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (51872070).
  • 摘要: 以锐钛矿TiO2(P25)为载体采用原位生长法负载锰氧化物制备了Mn/TiO2催化剂,再以等体积浸渍-煅烧法对该催化剂掺杂氧化铈制备Ce (x) Mn/TiO2-y催化剂用以烟气低温SCR脱硝.在固定锰负载量(质量分数为8%)的基础上,考察了铈掺杂量(铈锰摩尔比)、煅烧温度对催化剂SCR脱硝性能的影响.采用TEM、BET、XRD和XPS等手段表征了催化剂的理化结构特性.结果发现,当Ce/Mn的摩尔比例为1.0,煅烧温度为300℃时,Ce (1.0) Mn/TiO2-300催化剂在150—300℃温度范围内、10500—27000 h-1的空速范围内,能够保持90%以上的NO转化率.理化性能分析结果表明,煅烧温度对催化剂的微观形貌影响显著,随着煅烧温度的升高,Ce (1.0) Mn/TiO2-500催化剂活性物种颗粒集聚明显、比表面积降低,且锰氧化物价态分布偏向于低价态;铈的掺杂有助于Ce (1.0) Mn/TiO2-300催化剂活性物种在载体表面的均匀分散,可以促进产生更多的Mn4+物种和更多的吸附氧,有利于催化剂低温SCR脱硝性能的提升.
  • 加载中
  • [1] 杨永利,徐东耀,晁春艳,等.负载型Mn基低温NH3-SCR脱硝催化剂研究综述[J]. 化工进展,2016,35(4):1094-1100.

    YANG Y L, XU D Y, CHAO C Y, et al. Research advance review on supported Mn-based catalyst at low-temperature selective catalytic reduction of NOx with NH3[J]. Chemical Industry and Engineering Progress, 2016, 35(4):1094-1100(in Chinese).

    [2] MENG D M, ZHAN W C, GUO Y, et al. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature:Promotional role of Sm and its catalytic performance[J]. ACS Catalysis, 2015, 5(10):5973-5983.
    [3] LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14500-14508.
    [4] BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts[J]. Applied Catalysis B:Environmental, 1998, 18(1/2):1-36.
    [5] KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
    [6] ZHANG X L, WANG P M, WU X P, et al. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3[J]. Catalysis Communications, 2016, 83:18-21.
    [7] JIN R B, LIU Y, WU Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3:a comparative study[J]. Chemosphere, 2010, 78:1160-1166.
    [8] YAO X J, MA K, ZOU W X, et al. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese Journal of Catalysis, 2017, 38(1):146-159.
    [9] YAN X, TANG C J, YAO X J, et al. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis A, 2015, 495:206-216.
    [10] HU H, CAI S X, ZHANG D S, et al. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts:structure-activity relationships and in situ DRIFTs analysis[J]. ACS Catalysis, 2015, 5:6069-6077.
    [11] TANG C W, KUO M C, LIN C J, et al. Evaluation of carbon monoxide oxidation over CeO2/Co3O4 catalysts:effect of ceria loading[J]. Catalysis Today, 2008, 131(1-4):520-525.
    [12] LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2014, 144:90-95.
    [13] REN S, YANG J, ZHANG T, et al. Role of cerium in improving NO reduction with NH3 over Mn-Ce/ASC catalyst in low-temperature flue gas[J]. Chemical Engineering Research and Design, 2018, 133:1-10.
    [14] JIANG L J, LIU Q C, ZHAO Q, et al. Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnOx supported by nitric acid-modified activated carbon[J]. Research on Chemical Intermediates, 2018, 44:1729-1744.
    [15] 张先龙,郭亚晴,孟凡跃,等. 蜂窝状Mnx/PG-CC催化剂中低温CH4-SCR脱硝性能[J]. 环境化学,2016,35(1):89-101.

    ZHANG X L, GUO Y Q, MENG F Y, et al. Low temperature CH4-SCR honeycomb Mnx/PG-CC catalysts for selective catalytic reduction of NO[J]. Environmental Chemistry, 2016, 35(1):89-101(in Chinese).

    [16] 时博文. 凹凸棒石负载过度金属氧化物低温SCR脱硝催化剂的制备与表征[D]. 合肥:合肥工业大学, 2012. SHI B W. Preparation and characterization of palygorskite supported transition metal oxides catalyst for low-temperature selective catalytic reduction (SCR) of NO by NH3[D]. Hefei:Hefei University of Technology, 2012(in Chinese).
    [17] LI Y, LI Y P, WAN Y, et al. Structure-performance relationships of MnO2 nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Advance, 2016, 6:54926-54937.
    [18] YANG Q, LI W, CHEN Z H, et al. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2017, 206:203-215.
    [19] LI W, ZHANG C, LI X, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3:Evaluation and characterization[J]. Chinese Journal of Catalysis, 2018, 39:1653-1663.
    [20] LIU F P, HE H, ZHANG C B, et al. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range[J]. Chemical Communication, 2008, 164:2043-2045.
    [21] REN Y, ARMSTRONG R, JIAO F, et al. Influence of size on the rate of mesoporous electrodes for lithium batteries[J]. Chemical Society, 2010, 132:996-1004.
    [22] GU X, CHEN L, JU Z C, et al. Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23:4049-4056.
    [23] WANG B D, LI G, WANG H Y, et al. Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR[J]. Catalysis Communications, 2018, 108:82-87.
    [24] YANG S J, WANG C Z, LI J H, et al. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel:performance, mechanism and kinetic study[J]. Applied Catalysis B:Environmental, 2014, 110:71-80.
    [25] MU W T, ZHU J, ZHANG S, et al. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature:rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis[J]. Catalysis Science Technology, 2016, 6:7532-7548.
    [26] TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J]. Applied Catalysis B:Environmental, 2006, 62(3-4):265-273.
    [27] MUKHERJEE D, RAO B G, REDDY B M, et al. CO and soot oxidation activity of doped ceria:influence of dopants[J]. Applied Catalysis B:Environmental, 2016, 197:105-115.
    [28] RAMANA S, RAO B G, REDDY B M, et al. Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanilllyl alcohol[J]. Journal of Molecular Catalysis A:Chemical, 2016, 415:113-121.
    [29] ZHANG X L, WU X P, WU Q, et al. Performance study for NH3-SCR at low temperature based on dierent methods of Mnx/SEP catalyst[J]. Chemical Engineering Journal, 2019, 370:364-371.
    [30] KUMAR A, BABU S, KARAKOTI A S, et al. Luminescence properties of europium-doped cerium oxide nanoparticles:role of vacancy and oxidation states[J]. Langmuir, 2009, 25(18):10998-11007.
    [31] QI G, YANG R T. A superior catalyst for low-temperature NO reduction with NH3[J]. Chemical Communications, 2003, 34(26):848.
  • 加载中
计量
  • 文章访问数:  1073
  • HTML全文浏览数:  1073
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-29

Ce(x)Mn/TiO2-y催化剂低温NH3-SCR脱硝性能

    通讯作者: 张先龙, E-mail: zhangxianlong@hfut.edu.cn
  • 1. 合肥工业大学化学与化工学院, 合肥, 230009;
  • 2. 合肥工业大学仪器分析中心, 合肥, 230009
基金项目:

国家自然科学基金(51872070)资助.

摘要: 以锐钛矿TiO2(P25)为载体采用原位生长法负载锰氧化物制备了Mn/TiO2催化剂,再以等体积浸渍-煅烧法对该催化剂掺杂氧化铈制备Ce (x) Mn/TiO2-y催化剂用以烟气低温SCR脱硝.在固定锰负载量(质量分数为8%)的基础上,考察了铈掺杂量(铈锰摩尔比)、煅烧温度对催化剂SCR脱硝性能的影响.采用TEM、BET、XRD和XPS等手段表征了催化剂的理化结构特性.结果发现,当Ce/Mn的摩尔比例为1.0,煅烧温度为300℃时,Ce (1.0) Mn/TiO2-300催化剂在150—300℃温度范围内、10500—27000 h-1的空速范围内,能够保持90%以上的NO转化率.理化性能分析结果表明,煅烧温度对催化剂的微观形貌影响显著,随着煅烧温度的升高,Ce (1.0) Mn/TiO2-500催化剂活性物种颗粒集聚明显、比表面积降低,且锰氧化物价态分布偏向于低价态;铈的掺杂有助于Ce (1.0) Mn/TiO2-300催化剂活性物种在载体表面的均匀分散,可以促进产生更多的Mn4+物种和更多的吸附氧,有利于催化剂低温SCR脱硝性能的提升.

English Abstract

参考文献 (31)

目录

/

返回文章
返回