杨永利,徐东耀,晁春艳,等.负载型Mn基低温NH3-SCR脱硝催化剂研究综述[J]. 化工进展,2016,35(4):1094-1100. YANG Y L, XU D Y, CHAO C Y, et al. Research advance review on supported Mn-based catalyst at low-temperature selective catalytic reduction of NOx with NH3[J]. Chemical Industry and Engineering Progress, 2016, 35(4):1094-1100(in Chinese).
MENG D M, ZHAN W C, GUO Y, et al. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature:Promotional role of Sm and its catalytic performance[J]. ACS Catalysis, 2015, 5(10):5973-5983.
LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14500-14508.
BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts[J]. Applied Catalysis B:Environmental, 1998, 18(1/2):1-36.
KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
ZHANG X L, WANG P M, WU X P, et al. Application of MnOx/HNTs catalysts in low-temperature NO reduction with NH3[J]. Catalysis Communications, 2016, 83:18-21.
JIN R B, LIU Y, WU Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3:a comparative study[J]. Chemosphere, 2010, 78:1160-1166.
YAO X J, MA K, ZOU W X, et al. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese Journal of Catalysis, 2017, 38(1):146-159.
YAN X, TANG C J, YAO X J, et al. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis A, 2015, 495:206-216.
HU H, CAI S X, ZHANG D S, et al. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts:structure-activity relationships and in situ DRIFTs analysis[J]. ACS Catalysis, 2015, 5:6069-6077.
TANG C W, KUO M C, LIN C J, et al. Evaluation of carbon monoxide oxidation over CeO2/Co3O4 catalysts:effect of ceria loading[J]. Catalysis Today, 2008, 131(1-4):520-525.
LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2014, 144:90-95.
REN S, YANG J, ZHANG T, et al. Role of cerium in improving NO reduction with NH3 over Mn-Ce/ASC catalyst in low-temperature flue gas[J]. Chemical Engineering Research and Design, 2018, 133:1-10.
JIANG L J, LIU Q C, ZHAO Q, et al. Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnOx supported by nitric acid-modified activated carbon[J]. Research on Chemical Intermediates, 2018, 44:1729-1744.
张先龙,郭亚晴,孟凡跃,等. 蜂窝状Mnx/PG-CC催化剂中低温CH4-SCR脱硝性能[J]. 环境化学,2016,35(1):89-101. ZHANG X L, GUO Y Q, MENG F Y, et al. Low temperature CH4-SCR honeycomb Mnx/PG-CC catalysts for selective catalytic reduction of NO[J]. Environmental Chemistry, 2016, 35(1):89-101(in Chinese).
时博文. 凹凸棒石负载过度金属氧化物低温SCR脱硝催化剂的制备与表征[D]. 合肥:合肥工业大学, 2012. SHI B W. Preparation and characterization of palygorskite supported transition metal oxides catalyst for low-temperature selective catalytic reduction (SCR) of NO by NH3[D]. Hefei:Hefei University of Technology, 2012(in Chinese).
LI Y, LI Y P, WAN Y, et al. Structure-performance relationships of MnO2 nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Advance, 2016, 6:54926-54937.
YANG Q, LI W, CHEN Z H, et al. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2017, 206:203-215.
LI W, ZHANG C, LI X, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3:Evaluation and characterization[J]. Chinese Journal of Catalysis, 2018, 39:1653-1663.
LIU F P, HE H, ZHANG C B, et al. Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range[J]. Chemical Communication, 2008, 164:2043-2045.
REN Y, ARMSTRONG R, JIAO F, et al. Influence of size on the rate of mesoporous electrodes for lithium batteries[J]. Chemical Society, 2010, 132:996-1004.
GU X, CHEN L, JU Z C, et al. Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23:4049-4056.
WANG B D, LI G, WANG H Y, et al. Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR[J]. Catalysis Communications, 2018, 108:82-87.
YANG S J, WANG C Z, LI J H, et al. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel:performance, mechanism and kinetic study[J]. Applied Catalysis B:Environmental, 2014, 110:71-80.
MU W T, ZHU J, ZHANG S, et al. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature:rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis[J]. Catalysis Science Technology, 2016, 6:7532-7548.
TANG X F, LI Y G, HUANG X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J]. Applied Catalysis B:Environmental, 2006, 62(3-4):265-273.
MUKHERJEE D, RAO B G, REDDY B M, et al. CO and soot oxidation activity of doped ceria:influence of dopants[J]. Applied Catalysis B:Environmental, 2016, 197:105-115.
RAMANA S, RAO B G, REDDY B M, et al. Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanilllyl alcohol[J]. Journal of Molecular Catalysis A:Chemical, 2016, 415:113-121.
ZHANG X L, WU X P, WU Q, et al. Performance study for NH3-SCR at low temperature based on dierent methods of Mnx/SEP catalyst[J]. Chemical Engineering Journal, 2019, 370:364-371.
KUMAR A, BABU S, KARAKOTI A S, et al. Luminescence properties of europium-doped cerium oxide nanoparticles:role of vacancy and oxidation states[J]. Langmuir, 2009, 25(18):10998-11007.
QI G, YANG R T. A superior catalyst for low-temperature NO reduction with NH3[J]. Chemical Communications, 2003, 34(26):848.