界面化学与水力学作用下的生物炭在砂柱中的迁移特性

李星燃, 高鹏, 祝妍华, 梁媛. 界面化学与水力学作用下的生物炭在砂柱中的迁移特性[J]. 环境化学, 2020, (5): 1410-1419. doi: 10.7524/j.issn.0254-6108.2019081409
引用本文: 李星燃, 高鹏, 祝妍华, 梁媛. 界面化学与水力学作用下的生物炭在砂柱中的迁移特性[J]. 环境化学, 2020, (5): 1410-1419. doi: 10.7524/j.issn.0254-6108.2019081409
LI Xingran, GAO Peng, ZHU Yanhua, LIANG Yuan. Migration characteristics of biochar in sand column under the influence of interface chemistry and hydraulics[J]. Environmental Chemistry, 2020, (5): 1410-1419. doi: 10.7524/j.issn.0254-6108.2019081409
Citation: LI Xingran, GAO Peng, ZHU Yanhua, LIANG Yuan. Migration characteristics of biochar in sand column under the influence of interface chemistry and hydraulics[J]. Environmental Chemistry, 2020, (5): 1410-1419. doi: 10.7524/j.issn.0254-6108.2019081409

界面化学与水力学作用下的生物炭在砂柱中的迁移特性

    通讯作者: 梁媛, E-mail: liangyuan@usts.edu.cn
  • 基金项目:

    "十三五"国家水体污染控制与治理科技重大专项(2017ZX07205002),国家自然科学基金(青年)(21507097),江苏省自然科学基金(BK20150288)和苏州科技发展支撑(社会发展)计划(SS2019027)资助.

Migration characteristics of biochar in sand column under the influence of interface chemistry and hydraulics

    Corresponding author: LIANG Yuan, liangyuan@usts.edu.cn
  • Fund Project: Supported by the Major Science and Technology Projects for Water Pollution Control and Treatment of China (2017ZX07205002),the National Natural Science Foundation of China (21507097),the Natural Science Foundation of Jiangsu Province (BK20150288) and the Suzhou Science and Technology Support Program (SS2019027).
  • 摘要: 通过柱淋溶实验,分别研究不同离子强度或不同流速作用下,生物炭在石英砂柱中的迁移特征及驱动机制.结果表明,淋溶结束时,在高离子强度条件下,生物炭从生物炭层向石英砂柱中迁移的总质量最大,与1号柱(CK)相比,迁移质量提高了62%;主要驱动力为界面化学作用,高离子强度抑制了生物炭内部碱性物质的释放,颗粒表面双电层被压缩,降低了ζ电位,更多生物炭颗粒滞留在不稳定的第二极小势能处,易迁移出炭层.在高流速条件下,生物炭在石英砂柱中径向迁移深度最大,最大迁移深度为3.5—4 cm.主要驱动力为水力学作用,流速的增加,产生的水动力剪切力促使生物炭大聚体分散成小聚体,有利于生物炭随水流向径向深处迁移.
  • 加载中
  • [1] O'LAUGHLIN J, MCELLIGOTT K. Biochar for environmental management:Science and Technology, Johannes Lehmann Stephen M.Joseph Earthscan, London UK (2009), 448 p[J]. Forest Policy and Economics, 2009, 11(7):535-536.
    [2] 李婉媛,曹升,周垂帆.浅析生物炭修复土壤重金属污染研究进展[J].内蒙古林业调查设计,2019,42(4):98-100

    ,104. LI W Y,CAO S,ZHOU C F, et al. Brief analysis of the research progress of biochar remediation brief analysis of the research progress of biochar remediation of heavy metal pollution in soil[J]. Inner Mongolia Forestry Investigation and Design, 2019, 42(4):98-100, 104(in Chinese).

    [3] HOWAT P. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J].Environmental Pollution, 2011, 159(12):3269-3282.
    [4] WANG X S, MIAO H H, HE W, et al. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) ions on wheat-residue derived black carbon[J]. Journal of Chemical & Engineering Data, 2017, 56(3):444-449.
    [5] VILVANATHAN S, SHANTHAKUMAR S. Modeling of fixed-bed column studies for removal of cobalt ions from aqueous solution using Chrysanthemum indicum[J]. Research on Chemical Intermediates, 2017, 43(1):229-243.
    [6]
    [7] 潘亚男, 陈灿, 王欣,等. 凤眼莲源生物炭对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6):2342-2350.

    PAN Y N,CHEN C,WANG X, et al. Effects of water hyacinth biochar on the leaching characteristics and fractionations of As,Hg and Cd in a multi-metal contaminated soil[J].Acta Scientiae Circumstantiae, 2017, 37(6):2342-2350(in Chinese).

    [8] SINGH C, TIWARI S,GUPTA V K,et al. The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils[J]. Catena,2018,171:485-493.
    [9] 王震宇, 刘国成, MONICA,等. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 2014,35(12):4735-4744.

    WANG Z Y,LIU G C,MONICA X, et al. Adsorption of Cd(Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environmental Science, 201,35(12):4735-4744(in Chinese).

    [10] LIU H, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment,2018,645:702-709.
    [11] 张华纬, 甄华杨, 岳士忠,等. 水稻秸秆生物炭对污染土壤中镉生物有效性的影响[J]. 生态环境学报, 2017, 26(6):1068-1074.

    ZHANG H W,ZHEN H Y,YUE S Z,et al. Bioavailability of Cd in contaminated soil after short-term application of rice straw biochar[J]. Ecology and Environmental Sciences, 2017, 26(6):1068-1074(in Chinese).

    [12] 刘笑生,陆海鹰,崔红标,等.秸秆生物炭还田应用及环境风险综述[J].江苏农业科学,2018,46(24):28-35.

    LIU X S,LU H Y,CUI H B,et al. Review on application and environmental risk of straw biochar in returning to field[J]. Jiangsu Agricultural Science, 2018,46(24):28-35(in Chinese).

    [13] 杨刚. 高灰基生物炭农用对镉污染的控制机制及生态风险评价[D].南京:南京大学,2018. YANG G. Control mechanism and ecological risk assessment of cadmium pollution in high ash-based biochar agriculture[D].Nanjing:Nanjing University, 2018(in Chinese).
    [14] 刘旭东, 张润花, 李志国,等. 生物炭对设施栽培土壤重金属Cd形态变化的影响[J]. 中国农学通报, 2016, 32(15):125-129.

    LIU X D,ZHANG R H,LI Z G,et al. Effects of biochar on the morphology of heavy metal Cd in cultivated soil[J]. Bulletin of Chinese Agronomy, 2016, 32(15):125-129(in Chinese).

    [15] 陈昱, 钱云, 梁媛,等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4):2528-2534.

    CHEN Y,QIAN Y,LIANG Y, et al. Remediation effect and mechanism of biochar on Cd contaminated soil[J]. Journal of Environmental Engineering, 2017, 11(4):2528-2534(in Chinese).

    [16] 汪登俊. 生物炭胶体和几种人工纳米粒子在饱和多孔介质中的迁移和滞留研究[D].北京:中国科学院大学, 2014. WANG D J. Migration and retention of biochar colloids and several artificial nanoparticles in saturated porous media[D].Beijing:University of Chinese academy of sciences,2014(in Chinese).
    [17] 朱庆祥. 生物炭对Pb、Cd污染土壤的修复试验研究[D]. 重庆:重庆大学, 2011. ZHU Q X. Experimental study on remediation of Pb and Cd contaminated soil by biochar[D].Chongqing:Chongqing University,2011(in Chinese).
    [18] EL-NAGGAR A, LEE S S, AWAD Y M, et al. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils[J]. Geoderma, 2018:332:100-108.
    [19] 唐行灿,陈金林.生物炭对土壤理化和微生物性质影响研究进展[J].生态科学,2018,37(1):192-199.

    TANG X C,CHEN J L. Advances in studies on the effects of biochar on soil physicochemical and microbial properties[J]. Ecological Science, 2018,37(1):192-199(in Chinese).

    [20] 唐行灿, 张民. 生物炭修复污染土壤的研究进展[J]. 环境科学导刊, 2014(1):17-26. TANG X C,ZHAN M. Advances in biochar remediation of contaminated soils[J]. Guide to Environmental Science, 2014

    (1):17-26(in Chinese).

    [21] GRAETZ R D, SKJEMSTAD J O. The charcoal sink of biomass burning on the Australian continent[M]. CSIRO Atmospheric Research, 2003.
    [22] CARCAILLET C. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates[J]. The Holocene, 2001, 11(2):231-242.
    [23]
    [24] OBIA A, BØRRESEN T, MARTINSEN V, et al. Vertical and lateral transport of biochar in light-textured tropical soils[J]. Soil & Tillage Research, 2017, 165:34-40.
    [25] JULIE M, JOHANNES L, MARCO R, et al. Fate of soil-applied black carbon:downward migration, leaching and soil respiration[J]. Global Change Biology, 2010, 16(4):1366-1379.
    [26] FOEREID B, LEHMANN J, MAJOR J. Modeling black carbon degradation and movement in soil[J]. Plant and Soil, 2011, 345(1-2):223-236.
    [27] CHEN M, WANG D J, YANG F,et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution,2017,230:540-549.
    [28] 杨雯, 郝丹丹, 徐东昊,等. 生物炭颗粒在饱和多孔介质中的迁移与滞留[J]. 土壤通报, 2017, 48(2):304-312.

    YANG W,HAO D D,XU D H,et al. Migration and retention of biochar particles in saturated porous media[J]. Soil Bulletin, 2017, 48(2):304-312(in Chinese).

    [29] WANG D,ZHANG W,ZHOU D. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand[J].Environ Sci Technol, 2013, 47(10):5154-5161.
    [30] 褚灵阳, 汪登俊, 王玉军,等. 不同环境因子对纳米羟基磷灰石在饱和填充柱中迁移规律的影响[J]. 环境科学, 2011, 32(8):2284-2291.

    CHU L Y,WANG D J,WANG Y J,et al.Effects of different environmental factors on the migration pattern of nanometer hydroxyapatite in saturated packed columns[J]. Environmental Science, 2011, 32(8):2284-2291(in Chinese).

    [31] 刘明. 几种典型水溶液分散体系的Zeta电位及其稳定性研究[D]. 武汉:武汉理工大学, 2010. LIU M. Zeta potential and its stability of several typical aqueous dispersion systems[D].Wuhan:Wuhan University of Technology,2010(in Chinese).
    [32] 刘庆玲, 徐绍辉, 刘建立. 饱和多孔介质中高岭石胶体和SiO2胶体运移行为比较[J]. 土壤学报, 2008, 45(3):445-451.

    LIU Q L,XU S H,LIU J L,et al. Comparison of migration behavior between kaolinite colloids and SiO2 colloids in saturated porous media[J]. Journal of Soil, 2008, 45(3):445-451(in Chinese).

    [33] TUFENKJI N, ELIMELECH M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology, 2004, 38(2):529-536.
    [34] MARTIN S M, KOOKANA R S, VAN Z L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil[J]. Journal of Hazardous Materials, 2012, 231-232(6):70-78.
    [35] GROLIMUND D, ELIMELECH M, BORKOVEC M, et al. Transport of in situ obilized colloidal particles in packed soil columns[J]. Environmental Science & Technology, 1998, 32(22):3562-3569.
    [36] JOHNSON W P, LI X, YAL G. Colloid retention in porous media:Mechanistic confirmation of wedging and retention in zones of flow stagnation[J]. Environmental Science & Technology, 2007, 41(4):1279-1287.
    [37] HAHN M W, O'MELIAE C R. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions:some concepts and applications[J]. Environmental Science & Technology, 2004, 38(1):210-220.
    [38] HAHN M W, ABADZIC D, O'MELIA C R. Aquasols:On the role of secondary minima[J]. Environmental Science & Technology, 2004, 38(22):5915-5924.
    [39] REDMAN J A, WALKER S L, ELIMELECH M. Bacterial adhesion and transport in porous media:Role of the secondary energy minimum[J]. Environmental Science & Technology, 2004, 38(6):1777-1785.
    [40] TUFENKJI N, ELIMELECH M. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir:The ACS Journal of Surfaces & Colloids, 2004, 20(25):10818-10828.
    [41] SHEN C. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions[J]. Environmental Science & Technology, 2017, 41(20):6976-6982.
    [42]
    [43] 聂小东. 水力侵蚀对红壤丘陵区土壤有机碳迁移分布及稳定机制的影响[D].长沙:湖南大学,2017(in Chinese). NIE X D. Effects of hydraulic erosion on soil organic carbon migration distribution and stabilization mechanism in hilly areas of red soil[D].Changsha:Hunan University, 2017(in Chinese).
  • 加载中
计量
  • 文章访问数:  2076
  • HTML全文浏览数:  2076
  • PDF下载数:  46
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-14

界面化学与水力学作用下的生物炭在砂柱中的迁移特性

    通讯作者: 梁媛, E-mail: liangyuan@usts.edu.cn
  • 1. 苏州科技大学环境科学与工程学院, 苏州, 215009;
  • 2. 苏州高新区环境监察大队, 苏州, 215009
基金项目:

"十三五"国家水体污染控制与治理科技重大专项(2017ZX07205002),国家自然科学基金(青年)(21507097),江苏省自然科学基金(BK20150288)和苏州科技发展支撑(社会发展)计划(SS2019027)资助.

摘要: 通过柱淋溶实验,分别研究不同离子强度或不同流速作用下,生物炭在石英砂柱中的迁移特征及驱动机制.结果表明,淋溶结束时,在高离子强度条件下,生物炭从生物炭层向石英砂柱中迁移的总质量最大,与1号柱(CK)相比,迁移质量提高了62%;主要驱动力为界面化学作用,高离子强度抑制了生物炭内部碱性物质的释放,颗粒表面双电层被压缩,降低了ζ电位,更多生物炭颗粒滞留在不稳定的第二极小势能处,易迁移出炭层.在高流速条件下,生物炭在石英砂柱中径向迁移深度最大,最大迁移深度为3.5—4 cm.主要驱动力为水力学作用,流速的增加,产生的水动力剪切力促使生物炭大聚体分散成小聚体,有利于生物炭随水流向径向深处迁移.

English Abstract

参考文献 (43)

目录

/

返回文章
返回