-
我国餐厨垃圾产量巨大,每年产量大约为8.28×107 t,且逐年增加[1],因此,合理处理餐厨垃圾是我国面临的一个重要挑战。餐厨垃圾富含有机质,是厌氧生物处理的理想原料[2]。使用厌氧消化技术处理餐厨垃圾,能够在处理餐厨垃圾的同时产生甲烷,实现资源化[3]。然而,在实际应用中,餐厨垃圾厌氧消化往往面临酸化时间较长和产甲烷速率低等问题[4]。许多研究表明,将生物炭作为添加剂投放到厌氧消化体系中,可以有效缓解酸抑制,促进产甲烷[5-8]。WANG等[9]发现,蚯蚓粪便制成的生物炭可促进体系中挥发性脂肪酸(volatile fatty acids, VFAs)的降解,从而提高餐厨垃圾厌氧消化;SUNYOTO等[10]发现,木屑生物炭可以使餐厨垃圾厌氧消化的最大产甲烷提高41.6%,并缩短酸化停滞期。
生物炭是生物质在缺氧条件下热解得到的碳化物[11],其来源广泛,包括粪便、木质垃圾以及市政污泥等。我国每年产生大量的城市污泥,截至2017年,我国城镇污泥年产量达到3.75×107 t[12]。将污泥制成生物炭可以有效实现污泥的减量化,减少污泥中的病原菌等有机污染,提高污泥废弃物的再利用[13]。然而,目前鲜有研究使用污泥基生物炭作为餐厨垃圾厌氧消化的添加剂。
接种比(inoculum to substrate ratio, ISR)是餐厨垃圾厌氧消化中的一个重要影响因素,对反应的代谢产物及运行稳定性有重要影响[14]。ISR的不同将会使厌氧消化体系的相对有机负荷不同,从而影响其酸化程度。有研究表明,生物炭具有酸性缓冲能力,可以提高厌氧消化的pH[10, 15]。然而,生物炭对不同酸化程度的厌氧消化影响尚不明朗。本研究主要通过设置不同接种比,模拟得到不同酸化程度的餐厨垃圾厌氧酸化体系,观察污泥基生物炭缓解酸化抑制的能力;通过分析产甲烷效果以及反应器微生物群落结构变化,探究污泥基生物炭对餐厨垃圾厌氧消化的影响,从而为污泥基生物炭在餐厨垃圾厌氧消化的实际应用提供参考。
污泥基生物炭对餐厨垃圾厌氧消化产甲烷及微生物群落结构的影响
Effect of sewage sludge derived biochar addition on methane production and microbial community structure during anaerobic digestion of food waste
-
摘要: 为考察污泥基生物炭对餐厨垃圾厌氧消化的影响,以餐厨垃圾为基质,设置4种不同接种比(inoculum to substrate ratio, ISR)的批次实验,以得到不同酸化程度的厌氧消化体系;检测空白组、餐厨垃圾对照组和生物炭实验组的产甲烷情况和微生物群落结构的变化。结果表明:当ISR=2时,生物炭对餐厨垃圾厌氧消化效果不明显;当ISR=0.5时,生物炭使其停滞期缩短28.9%左右;ISR越小,生物炭对酸化停滞时间缩短以及产甲烷速率提高的效果越明显。同时,生物炭可以促进Chloroflex,Proteobacteria,Bacteroidetes的生长,从而提高厌氧消化中间产物的产生。当ISR较大时,厌氧消化系统的产甲烷途径以乙酸利用型为主,投加生物炭可以促进乙酸型产甲烷;随着ISR减小,产甲烷途径有逐渐向氢利用型转变的趋势,同时Methanosacrina逐渐替代Methanosaeta利用乙酸产甲烷。本研究结果可为污泥基生物炭在餐厨垃圾厌氧消化的实际应用提供参考。Abstract: In order to investigate the effect of sewage sludge derived biochar (SSB) addition on anaerobic digestion (AD) of food waste (FW), batch experiments with 4 inoculum to substrate ratios (ISRs) were set to produce AD systems with different acidification degrees. The methane production and microbial community structure in AD systems of blank group, FW control group and SSB addition group were tested. The results found that when ISR=2, the effect of SSB on AD performance of FW was not obvious. However, biochar reduced the lag phase by about 28.9% at ISR=0.5. The less ISR was, the more obvious effects of acidification lag time reduction and the methane production rate improvement under SSB addition were. At the same time, SSB could promote the growth of Chloroflex, Proteobacteria and Bacteroidetes, and the production of intermediate products during AD process. When the ISR was large, the methanogenic pathway in AD was mainly acetic acid utilization type, and SSB addition could promote the acetic acid type methanogenesis. As ISR decreased, the methanogenesis pathway gradually shifted to the hydrogen utilization type. At the same time, Methanosacrina gradually replaced Methanosaeta to use acetic acid for methane production. This study provided a reference for the practical application of SSB addition in the AD of FW.
-
Key words:
- sewage sludge /
- biochar /
- food waste /
- anaerobic digestion /
- methane production /
- microbial community
-
表 1 接种污泥和餐厨垃圾基本性质
Table 1. Characteristics of seed sludge and food waste
接种污泥及基质 TS/% VS/% VS/TS 含水率/% 接种污泥 1.78 1.11 62.27 98.22 餐厨垃圾(可溶性淀粉) 99.04 98.64 99.60 0.96 注:TS、VS和含水率以湿重计。 表 2 污泥原材料和污泥基生物炭的基本性质
Table 2. Characteristics of raw sewage sludge and sewage sludge derived biochar
% 原材料和
生物炭水分 工业分析 灰分组成 挥发分 灰分 固定碳 Al2O3 SiO2 P2O5 Fe2O3 CaO K2O TiO2 SO3 ZnO MnO CuO Cr2O3 PbO 污泥原材料 77.9 56.0 33.6 10.5 11.3 9.6 5.3 2.6 1.9 0.8 0.2 0.2 0.2 0.03 0.01 0.01 0.004 污泥基生物炭 4.8 16.2 17.0 66.9 23.0 18.8 16.5 20.5 11.8 4.2 1.3 2.0 1.2 0.16 0.13 0.17 0.03 表 3 厌氧消化过程中修正的Gompertz模型的动力学拟合结果
Table 3. Fitted results for anaerobic digestion process by modified Gompertz model
组别 停滞期λ/d 最大甲烷
产率/(mL·g−1)累积甲烷产率/(mL·g−1) R2 拟合值Mmax 测定值 2-SSB 0.001 49.26 415.38 432.95 0.92 2-对照组 0.001 49.13 411.18 421.77 0.94 1.5-SSB 0.340 37.77 348.36 363.02 0.98 1.5-对照组 0.770 34.53 325.52 337.09 0.98 1-SSB 12.610 17.22 314.35 316.19 0.98 1-对照组 16.190 13.08 243.69 255.36 0.97 0.5-SSB 23.490 9.08 198.23 202.24 0.96 0.5-对照组 33.050 5.42 38.01 39.49 0.99 -
[1] UÇKUN KIRAN E, TRZCINSKI A P, NG W J, et al. Bioconversion of food waste to energy: A review[J]. Fuel, 2014, 134: 389-399. doi: 10.1016/j.fuel.2014.05.074 [2] 张国华, 张志红, 黄江丽, 等. 餐厨垃圾厌氧发酵连续产氢产甲烷的试验研究[J]. 中国沼气, 2016, 34(4): 8-12. doi: 10.3969/j.issn.1000-1166.2016.04.002 [3] LI R, CHEN S, LI X. Anaerobic co-digestion of kitchen waste and cattle manure for methane production[J]. Energy Sources, 2009, 31(20): 1848-1856. doi: 10.1080/15567030802606038 [4] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057 [5] LU F, LUO C H, SHAO L M, et al. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina[J]. Water Research, 2016, 90: 34-43. doi: 10.1016/j.watres.2015.12.029 [6] SUN C Y, LIU F, SONG Z W, et al. Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature[J]. Bioresource Technology, 2019, 276: 65-73. doi: 10.1016/j.biortech.2018.12.105 [7] MARTINEZ E J, ROSAS J G, SOTRES A, et al. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities[J]. Biochemical Engineering Journal, 2018, 137: 314-325. doi: 10.1016/j.bej.2018.06.010 [8] QIN Y, WANG H, LI X, et al. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar[J]. Bioresource Technology, 2017, 245: 1058-1066. doi: 10.1016/j.biortech.2017.09.047 [9] WANG D, AI J, SHEN F, et al. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost[J]. Bioresource Technology, 2017, 227: 286-296. doi: 10.1016/j.biortech.2016.12.060 [10] SUNYOTO N M S, ZHU M, ZHANG Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J]. Bioresource Technology, 2016, 219: 29-36. doi: 10.1016/j.biortech.2016.07.089 [11] QAMBRANI N A, RAHMAN M M, WON S, et al. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 255-273. [12] 王磊, 王胜凡, 刘欢, 等. 污泥基生物炭的制备及其对重金属的吸附性能[J]. 广东化工, 2018, 45(5): 82-84. doi: 10.3969/j.issn.1007-1865.2018.05.038 [13] 袁浩然, 鲁涛, 黄宏宇, 等. 市政污泥热解制备生物炭实验研究[J]. 化工学报, 2012, 63(10): 3310-3315. doi: 10.3969/j.issn.0438-1157.2012.10.043 [14] LI Y, WANG Y, YU Z, et al. Effect of inoculum and substrate/inoculum ratio on the performance and methanogenic archaeal community structure in solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover[J]. Waste Management, 2018, 81: 117-127. doi: 10.1016/j.wasman.2018.09.042 [15] PAN J, MA J, LIU X, et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresource Technology, 2019, 275: 258-265. doi: 10.1016/j.biortech.2018.12.068 [16] WANG Y H, LI S L, CHEN I C, et al. A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay[J]. International Journal of Hydrogen Energy, 2010, 35(23): 13004-13012. doi: 10.1016/j.ijhydene.2010.04.065 [17] MA Y Q, CAI W W, LIU Y. An integrated engineering system for maximizing bioenergy production from food waste[J]. Applied Energy, 2017, 206: 83-89. doi: 10.1016/j.apenergy.2017.08.190 [18] YE M, LIU J, MA C, et al. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review[J]. Journal of Cleaner Production, 2018, 192: 316-326. doi: 10.1016/j.jclepro.2018.04.244 [19] LOWELL S, SHIELDS J E, THOMAS M A, et al. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density[M]. New York: Springer Science & Business Media, 2004. [20] 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064 [21] BARNETO A G, CARMONA J A, ALFONSO J E M, et al. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 108-114. doi: 10.1016/j.jaap.2009.04.011 [22] 廖艳芬, 马晓茜. 城市污水污泥燃烧特性和动力学特性分析[J]. 燃料化学学报, 2009, 37(3): 296-301. doi: 10.3969/j.issn.0253-2409.2009.03.008 [23] REGKOUZAS P, DIAMADOPOULOS E. Adsorption of selected organic micro-pollutants on sewage sludge[J]. Chemosphere, 2019, 224: 840-851. doi: 10.1016/j.chemosphere.2019.02.165 [24] REN N N, TANG Y Y, LI M. Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar[J]. Process Safety and Environmental Protection, 2018, 115: 70-78. doi: 10.1016/j.psep.2017.11.006 [25] 房明, 吴树彪, 张万钦, 等. 接种比对餐厨垃圾中温厌氧消化的影[J]. 中国农业大学学报, 2014, 19(1): 186-192. [26] 周丽丽, 杨帆, 罗瑞芬, 等. 氧化铁对不同有机负荷下餐厨垃圾厌氧消化产气的影响[J]. 环境工程学报, 2017, 11(7): 4258-4264. doi: 10.12030/j.cjee.201605109 [27] STAMS A J, PLUGGE C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8): 568-77. doi: 10.1038/nrmicro2166 [28] DE VRIEZE J, DE LATHOUWER L, VERSTRAETE W, et al. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste[J]. Water Research, 2013, 47(11): 3732-3741. doi: 10.1016/j.watres.2013.04.020 [29] LYU F, LIU Y, SHAO L, et al. Powdered biochar doubled microbial growth in anaerobic digestion of oil[J]. Applied Energy, 2019, 247: 605-614. doi: 10.1016/j.apenergy.2019.04.052 [30] LI Y, CHEN Y, WU J. Enhancement of methane production in anaerobic digestion process: A review[J]. Applied Energy, 2019, 240: 120-137. doi: 10.1016/j.apenergy.2019.01.243 [31] LAHAV O, MORGAN B E. Titration methodologies for monitoring of anaerobic digestion in developing countries: A review[J]. Journal of Chemical Technology and Biotechnology, 2004, 79(12): 1331-1341. doi: 10.1002/(ISSN)1097-4660 [32] SHEN Y W, LINVILLE J L, IGNACIO-DE LEON P A A, et al. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar[J]. Journal of Cleaner Production, 2016, 135: 1054-1064. doi: 10.1016/j.jclepro.2016.06.144 [33] 孙娟, 李东, 郑涛, 等. 微量元素对蔬菜废弃物连续厌氧消化系统微生物群落结构的影响[J]. 应用与环境生物学报, 2019, 25(1): 156-163. [34] GUO X H, WANG C, SUN F Q, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings[J]. Bioresource Technology, 2014, 152: 420-428. doi: 10.1016/j.biortech.2013.11.012 [35] YI J, DONG B, JIN J, et al. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis[J]. Plos One, 2014, 9(7): e102548. doi: 10.1371/journal.pone.0102548 [36] ANTWI P, LI J Z, BOADI P O, et al. Dosing effect of zero valent iron (ZVI) on biomethanation and microbial community distribution as revealed by 16S rRNA high-throughput sequencing[J]. International Biodeterioration & Biodegradation, 2017, 123: 191-199. [37] SHEN Y W, FORRESTER S, KOVAL J, et al. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production[J]. Journal of Cleaner Production, 2017, 167: 863-874. doi: 10.1016/j.jclepro.2017.05.135 [38] NG K K, SHI X, ONG S L, et al. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment[J]. Bioresource Technology, 2016, 200: 1076-1079. doi: 10.1016/j.biortech.2015.10.100 [39] KARAKASHEV D, BATSTONE D J, TRABLY E, et al. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae[J]. Applied and Environmental Microbiology, 2006, 72(7): 5138-5141. doi: 10.1128/AEM.00489-06 [40] FERGUSON R M W, COULON F, VILLA R. Understanding microbial ecology can help improve biogas production in AD[J]. Science of the Total Environment, 2018, 642: 754-763. doi: 10.1016/j.scitotenv.2018.06.007 [41] CAYETANO R D A, PARK J H, KANG S, et al. Food waste treatment in an anaerobic dynamic membrane bioreactor (AnDMBR): Performance monitoring and microbial community analysis[J]. Bioresource Technology, 2019, 280: 158-164. doi: 10.1016/j.biortech.2019.02.025 [42] JETTEN M S M, STAMS A J M, ZEHNDER A J B. Methanogenesis from acetate: A comparison of the acetate metabolism in Methanothrix-Soehngenii and Methanosarcina Spp[J]. FEMS Microbiology Letters, 1992, 88(3/4): 181-197.